
Implementation of Multidimensional
Databases in Column-Oriented

NoSQL Systems

Max Chevalier, Mohammed El Malki(&), Arlind Kopliku,
Olivier Teste, and Ronan Tournier

Université de Toulouse, IRIT UMR 5505, 118 Route de Narbonne,
31062 Toulouse, France

{Max.Chevalier,Mohammed.Malki,Arlind.Kopliku,

Olivier.Teste,Ronan.Tournier}@irit.fr

Abstract. NoSQL (Not Only SQL) systems are becoming popular due to known
advantages such as horizontal scalability and elasticity. In this paper, we study the
implementation of multidimensional data warehouses based on column-oriented
NoSQL systems. To do this, we define a set of mapping rules that transform a
conceptual multidimensional data model into a logical column-oriented model.
We consider three ways (three sub-models) to structure conceptual multidimen-
sional data model into a column-oriented model. Then, we show an implemen-
tation of the proposed rules. Finally, we focus, through experiment, on data
loading, model-to-model conversion and OLAP cuboid computation.

Keywords: Data warehouse design � Multidimensional modelling � NoSQL
databases � Model transformation rules � Column-Oriented NoSQL model

1 Introduction

NoSQL solutions have proven some clear advantages with respect to relational data-
base management systems (RDBMS) [17]. Nowadays, research attention has turned
towards using these systems for storing “big” data and analyzing it. This work joins
substantial ongoing work on the area on the use of NoSQL solutions for data ware-
housing [4, 6, 18, 19].

In this paper, we study one category of NoSQL stores: column-oriented systems
such as HBase [11] or Cassandra [13] and inspired by Bigtable [2]. Indeed,
column-oriented systems are one of the most famous families of NoSQL systems. They
allow more flexibility in schema design using a vertical data organization with column
families and with no static non-mutable schema defined in advance, i.e. the data
schema can evolve. However, although, column-oriented databases are declared
schemaless (no schema needed), most use cases require some sort of data model.

When it comes to data warehouses, previous research has shown that it can be
instantiated with different logical models [12]. Data warehousing relies mostly on

© Springer International Publishing Switzerland 2015
T. Morzy et al. (Eds.): ADBIS 2015, LNCS 9282, pp. 79–91, 2015.
DOI: 10.1007/978-3-319-23135-8_6

multidimensional data modelling which is a conceptual1 model that uses facts to model
an analysis subject and dimensions for analysis axes. Until now there is no work (only
an initial attempt in [4]) that considers the direct mapping from the multidimensional
conceptual model to NoSQL logical models. A possible way to do this is to map the
multidimensional model to relational databases and then export the latter into a column
oriented system. In this paper we study the direct transformation of the data warehouse
conceptual model into a column-oriented system (see Fig. 1).

NoSQL models are more expressive than relational models i.e. we do not only have
to describe data and relations; we also have a flexible data structure (e.g. nested
elements). In this context, more than one approach is candidate as a mapping of the
multidimensional model. Moreover, evolving requirements in terms of analyses or data
query performance might demand switching from one logical model to another.
Finally, analysis queries can be very time consuming and speeding their execution
consists generally in precomputing these queries (called aggregates) and this
pre-computation requires also a logical model.

In this paper, we focus on data models for data warehousing. We study three logical
column-oriented models. We provide a formalism for expressing each of these
sub-models which enables us to generate mapping from the conceptual model. We
show how we can instantiate data warehouses in column-oriented stores. Our study
includes evaluation for these models on data loading, model-to-model conversions and
the computation of pre-computed aggregates (also called OLAP cuboids grouped in an
OLAP cube).

Our motivation is multiple. The implementation of OLAP systems with NoSQL
systems is a new alternative [7, 8, 16]. These systems have several advantages such as
increased flexibility and scalability. The increasing scientific research in this direction
demands for formalization, common-agreement models and evaluations of different
NoSQL systems.

Fig. 1. From multidimensional conceptual model to logical models.

1 Conceptual level data models describe data in a generic way regardless the information technologies
used, while logical level models use a specific technique for implementing the conceptual level.

80 M. Chevalier et al.

We can summarize our contribution as follows:

– logical notations for NoSQL systems where structures and values are clearly
separated;

– three column-oriented approaches to map conceptual multidimensional data ware-
house schemas to a logical model;

– the conversions from one approach to another at the logical level through the
definition of a set of transformation rules;

– the computation of the OLAP cube using NoSQL technologies.

2 State of the Art

Several research works have focused on translating data warehousing concepts into a
relational (R-OLAP) logical level [3, 6] as multidimensional databases are mostly
implemented using the relational technologies. Mapping rules are used to convert
structures of the conceptual level (facts, dimensions and hierarchies) into a logical
model based on relations. Moreover, many works have focused on implementing
logical optimization methods based on pre-computed aggregates (also called materi-
alized views) [1]. However, R-OLAP implementations suffer from scaling-up to large
data volumes (i.e. “Big Data”) and research is currently underway for new solutions
such as using NoSQL systems [17]. Our approach aims at revisiting these processes for
automatically implementing multidimensional conceptual models directly into NoSQL
models.

Other studies investigate the process of transforming relational databases into a
NoSQL logical model (see Fig. 1). In [14], the author proposed an approach for
transforming a relational database into a column-oriented NoSQL database. In [18], the
author studies “denormalizing” data into schema-free databases. However, these
approaches never consider the conceptual model of data warehouses. They are limited
to the logical level, i.e. transforming a relational model into a column-oriented model.
More specifically, the duality fact/dimension requires guaranteeing a number of con-
straints usually handled by the relational integrity constraints and these constraints
cannot be considered when using the logical level as starting point.

This study highlights that there are currently no approaches for automatically and
directly transforming a data warehouse multidimensional conceptual model into a
NoSQL logical model. It is possible to transform multidimensional conceptual models
into a logical relational model, and then to transform this relational model into a logical
NoSQL model. However, this transformation using the relational model as a pivot
model has not been formalized as both transformations were studied independently of
each other. Also, this indirect approach can be tedious.

We can also cite several recent works that are aimed at developing data warehouses
in NoSQL systems whether columns-oriented [9], document-oriented [5], or key-value
oriented [19]. However, the main goal of these papers is to propose benchmarks. These
studies have not focused on the model transformation process and they only focus one
NoSQL model. These models [5, 9, 19] require the relational model to be generated
first before the abstraction step.

Implementation of Multidimensional Databases in Column-Oriented NoSQL Systems 81

In our approach we consider the instatiation of datawarehouses on column-oriented
stores. The conceptual model is mapped directly on three different logical models.

3 Multidimensional Conceptual Model and Cube

3.1 Conceptual Multidimensional Model

To ensure robust translation rules we present the multidimensional model used at the
conceptual level [10, 16].

A multidimensional schema, namely E, is defined by (FE, DE, StarE) where:

– FE={F1,…, Fn} is a finite set of facts,
– DE={D1,…, Dm} is a finite set of dimensions,
– StarE: FE →2D

E
is a function that associates facts of FE to sets of dimensions along

which it can be analyzed (2D
E
is the power set of DE).

A dimension, denoted Di2DE (abusively noted as D), is defined by (ND, AD, HD)
where:

– ND is the name of the dimension,
– AD ¼ aD1 ; . . .; a

D
u

� � [{idD, AllD} is a set of dimension attributes,
– HD ¼ HD

1 ; . . .;H
D
v

� �
is a set hierarchies.

A hierarchy of the dimension D, denoted Hi2HD, is defined by (NHi, ParamHi,
WeakHi) where:

– NHi is the name of the hierarchy,
– ParamHi ¼ \idD; pHi

1 ; . . .; pHi
vi ;All

D [is an ordered set of vi+2 attributes which are
called parameters of the relevant graduation scale of the hierarchy, 8k2[1..vi],
pHi
k 2AD.

– WeakHi: ParamHi → 2A
D�ParamHi is a function associating with each parameter

possibly one or more weak attributes.

A fact, F2FE, is defined by (NF, MF) where:

– NF is the name of the fact,
– MF={f1(m1),…, fv(mv)} is a set of measures, each associated with an aggregation

function fi.

3.2 OLAP Cube

The pre-computed aggregate lattice or OLAP cube (also called sometimes the OLAP
cuboid lattice) corresponds to a set of views or cuboids each being a subset of
dimensions associated to a subset of measures of one fact. Technically, each view or
cuboid corresponds to an analysis query. OLAP cuboids are pre-computed to speed up
analysis query execution and thus facilitate analyzing data according to dimension

82 M. Chevalier et al.

combinations. Measure data is grouped according to the dimensions and aggregation
functions are used to summarize the measure data according to these groups. Formally,
an OLAP cuboid O is derived from E, O = (FO,DO) such that:

– FO is a fact derived from F (F2FE) with a subset of measures, MO�MF.
– DO�2Star

EðFÞ�DE is a subset of dimensions of DE. More precisely, DO is one of the
combinations of the dimensions associated to the fact F (StarE(F)).

If we generate OLAP cuboids using all dimension combinations of one fact, we have
an OLAP cuboid lattice [1, 3] (also called a pre-computed aggregate lattice or cube).

3.3 Case Study

We use an excerpt of the star schema benchmark [5]. It consists in a monitoring of a
sales system. Orders are placed by customers and the lines of the orders are analyzed.
A line consists in a part (a product) bought from a supplier and sold to a customer at a
specific date. The conceptual schema of this case study is presented in Fig. 2.

The fact FLineOrder is defined by (LineOrder, {SUM(Quantity), SUM(Discount),
SUM(Revenue), SUM(Tax)}) and it is analyzed according to four dimensions, each
consisting of several hierarchical levels (called detail levels or parameters):

– The Customer dimension (DCustomer) with parameters Customer (along with the
weak attribute Name), City, Region and Nation,

Fig. 2. Graphical notations [10, 16] of the multidimensional conceptual model.

Implementation of Multidimensional Databases in Column-Oriented NoSQL Systems 83

– The Part dimension (DPart) with parameters Partkey (with weak attributes Size and
Prod_Name), Category, Brand and Type; organized using two hierarchies HBrand
and HCateg,

– The Date dimension (DDate) with parameters Date, Month (with a weak attribute,
MonthName) and Year,

– The Supplier dimension (DSupplier) with parameters Supplier (with weak attributes
Name), City, Region and Nation.

From this schema, called ESSB, we can define cuboids, for instance:

– (FLineOrder, {DCustomer, DDate, DSupplier }),
– (FLineOrder, {DCustomer, DDate }).

4 Modeling a Data Warehouse Using Column-Oriented
Stores

4.1 Column-Oriented Data Model Formalism

Column-Oriented NoSQL models provide tables with a flexible schema (untyped
columns) where the number of columns may vary between each record (called rows).
Each row has a row key and a set of column families. Physical storage is organized
according to these column families, hence a “vertical partitioning” of the data. A col-
umn family consists of a set of columns, each associated with a qualifier (name) and an
atomic value. Every value can be “versioned” using a timestamp. The flexibility of a
column-oriented NoSQL database enables managing the absence of some columns
between the different table rows. However, in the context of multidimensional data
storage, this rarely happens as data is usually highly structured. This implies that the
structure of a column family (i.e. the set of columns of the column family) will be the
same for all table rows.

The following notations are used for describing a NoSQL model with respect to the
definition of conceptual models. In addition to attribute names and values that are also
present in the conceptual model, we focus here on the structure of rows.

We define a row RT as a combination of:

– T: the table where the row belongs
– F: the column families of the table
– K: all column names
– V: all atomic values of the column
– key: the row identifier
– P: all attributes mapped as a combination of row, column-family and column name.

A attribute path p2P p 2 P. is described as p=RT.f:q:v where f2F, q2K and v2V.
The example displayed in Fig. 3 uses a tree-like representation and describes a row (ri)
identified by the key named Key (with a value v0) in a table called SSB.

84 M. Chevalier et al.

4.2 Column-Oriented Models for Data Warehousing

In column-oriented stores, the data model is determined not only by its attributes and
values, but also by the column families that group attributes (i.e. columns). In relational
database models, mapping from conceptual to logical structures is more straightfor-
ward. In column-oriented stores, there are several candidate approaches, which can
differ on the tables and structures used. So far, no logical model has been proven better
than another one and no mapping rules are widely accepted.

In this section, we present three logical column-oriented models. The first two
models do not split data. Data contains redundancy as all the data about one fact and its
related dimensions is stored in one table. The first model (MLC0) stores data grouped in
a unique column family. In the second model (MLC1), we use one column family for
each dimension and one dedicated for the fact. The third model (MLC2) splits data into
multiple tables therefore reducing redundancy.

– MLC0: For each fact, all related dimensions attributes and all measures are com-
bined in one table and one column family. We call this approach the “simple flat
model”.

– MLC1 (inspired from [4]): For each fact, all attributes of one dimension are stored
in one column family dedicated to the dimension. All fact attributes (measures) are
stored in one column family dedicated to the fact attributes. Note that there are
different ways to organize data in column families and this one of them.

Fig. 3. Tree-like partial representation of a column-oriented table.

Implementation of Multidimensional Databases in Column-Oriented NoSQL Systems 85

– MLC2: For each fact and its dimensions, we store data in dedicated tables one per
dimension and one for the fact table. We keep these tables simple: one column
family only. The fact table will have references to the dimension tables. We call this
model the “shattered model”. This model has known advantages such as less
storage space usage, but it can slow down querying as joins in NoSQL can be
problematic.

4.3 Mappings with the Conceptual Model

The formalism that we have defined earlier enables us to define a mapping from the
conceptual multidimensional model to each of our three logical models. Let O = (FO,
DO) be a cuboid for a multidimensional model E built from the fact F with dimensions
in DE.

Table 1 shows how we can map any measure m of FO and any dimension D of DO

into all 3 models MLC0, MLC1 and MLC2. Let T be a generic table, TD a table for the
dimension D, TF a table for a fact F and cf a generic column family.

The above mappings are detailed in the following paragraphs.

Conceptual to MLC0. To instantiate this model from the conceptual model, three
rules are applied:

– Each cuboid O (FO and its dimensions DO) is translated into a table T with only one
column family cf.

– Each measure m2FO is translated into an attribute of cf, i.e. RT.cf:m.
– For all dimensions D2DO, each attribute d2AD of the dimension D is converted into

an attribute (a column) of cf, i.e. RT.cf:d.

Conceptual to MLC1. To instantiate this model from the conceptual model, five
rules are applied:

– Each cuboid O (FO and their dimensions DO) is translated into a table T.
– The table contains one column family (denoted cfF) for the fact F.
– The table contains one column family (denoted cfD) for every dimension D2DO.
– Each measure m2FO is translated into an attribute (a column) in cfF, i.e. R

T.cfF:m.
– For all dimensions D2DO, each attribute d2AD of the dimension D is converted into

an attribute (a column) of cfD, i.e.R
T.cfD:d.

Table 1. Transformation rules from the conceptual model to the logical models.

Conceptual:
multidimensional model

Logical: Column-Oriented models
MLC0 MLC1 MLC2

8D2DO, 8d2AD

(d is an attribute of D)
d→ RT.
cf:d

d→ RT.
cfD:d

d ! RTD
:cf :d ^ if d ¼ idDthend !

FTF
:cf :d

8m2FO m→ RT.
cf.m

m→ RT.
cfF:m

m→ RTF
:cf :m

86 M. Chevalier et al.

Conceptual to MLC2. To instantiate this model from the conceptual model, three
rules are applied:

– Given a cuboid O, the fact FO is translated into a table TF with one column family cf
and each dimension D2DO is translated into a table TD with one column family cfD
per table.

– Each measure m2FO is translated into an attribute of the column family cf in the
table TF, i.e. RTF

.cf:m.
– For all dimensions D2DO, each attribute d2AD of the dimension D is converted into

an attribute (a column) in the column family cf of the table TD, i.e. RTD
.cf:d. And if

d is the root parameter (idD), the attribute is also translated as an attribute in the
column family cf of the table TF, i.e. RTF

.cf:d.

5 Experiments

Our goal is firstly to validate the instantiation of data warehouses with our three logical
approaches. Secondly we consider model conversion from one model MLCi to another
MLCj, with j≠i. Thirdly we generate OLAP cuboids and we compare the computation
effort required by each models. We use the Star Schema Benchmark, SSB [5, 15], that
is popular for generating data for decision support systems. We use HBase, one of the
most popular column-oriented system, as NosQL storage system.

5.1 Protocol

Data. Data is generated using an extended version of SSB to generate raw data
specific to our models in normalized and denormalized formats. This is very convenient
for our experimental purposes.

The benchmark models a simple product retail example and corresponds to a typical
decision support star-schema. It contains one fact table “LineOrder” and 4 dimensions
“Customer”, “Supplier”, “Part” and “Date” (see Fig. 2 for an excerpt). The dimensions
are composed of hierarchies; e.g. Date is organized according to one hierarchy of
attributes (d_date, d_month, d_year).

We use different scale factors (sf), namely sf=1, sf=10, sf=100 in our experiments.
The scale factor sf=1 generates approximately 107 lines for the “LineOrder” fact, for
sf=10 we have approximately 108 lines and so on. For example, using the split model
we will have (sf x 107) lines for “LineOrder” and a lot less for the dimensions which is
typical as facts contain a lot more information than dimensions.

Data Loading. Data is loaded into HBase using native instructions. These are sup-
posed to load data faster when loading from files. The current version of HBase loads
data with our logical model from CSV2

files.

2 CSV, Comma separated values files.

Implementation of Multidimensional Databases in Column-Oriented NoSQL Systems 87

Lattice Computation. To compute the aggregate lattice, we use Hive on top of
HBase to ease query writing as Hive queries are SQL-like. Four levels of aggregates
are computed on top of the detailed facts (see Fig. 5). These aggregates are: all
combinations of 3 dimensions, all combinations of 2 dimensions, all combinations of 1
dimension, and all data (detailed fact data). At each aggregation level, we apply
aggregation functions: max, min, sum and count on all measures.

Hardware. The experiments are done on a cluster composed of 3 PCs (4 core-i5,
8 GB RAM, 2 × 2 TB disks, 1 Gb/s network), each being a worker node and one of
them also acting as dispatcher (name node).

5.2 Experimental Results

In Table 2 we summarize data loading times by model and scale factor. We can observe at
scale factor SF1, we have 107 lines on each line order table for a 997 MB disk memory
usage for MLC2 (3.9 GB for both MLC0 and MLC1). At scale factor SF10 and SF100 we
have respectively 108 lines and 109 lines and 9.97 GB (39 GB MLC0 and MLC1) and
97.7 GB (390 GBMLC0 and MLC1) for of disk memory usage. We observe that memory
usage is lower in the MLC2 model. This is explained by the absence of redundancy in the
dimensions. For all scale factors, the “dimension” tables “Customers”, “Supplier”, “Part”
and “Date” have respectively 50000, 3333, 3333333 and 2556 records.

In Fig. 4, we show the time needed to convert one model to another model using
SF1 data. When we convert data from MLC0 to MLC1 and vice-versa conversion
times are comparable. To transform data from MLC0 to MLC1 we records are just split
on the several columns families and during the reverse (MLC1 to MLC0), we fuse
records. The conversion is more complicated when we consider MLC0 and MLC2. To
convert MLC0 data into MLC2 we need to split data in multiple tables: we have to
apply 5 projections on original data and select only distinct keys for dimensions.
Although, we produce less data (in memory usage), more processing time is needed
than when converting data to MLC1. Converting from MLC2 to MLC0 is the slowest
process by far. This is due to the fact that most NoSQL systems (including HBase) do
not natively support joins efficiently.

Table 2. Data loading time and storage space required for each model in HBase.

MLC0 MLC1 MLC2

SF1 (sf=1, 107 lines) 380 s / 3.9 GB 402 s / 3.9 GB 264 s / 0.997 GB
SF10 (sf=10 108 lines) 3458 s / 39 GB 3562 s / 39 GB 2765 s / 9.97 GB
SF100 (sf=100, 109 lines) 39075 s / 390 GB 39716 s / 390 GB 33097 s / 99.7 GB

Fig. 4. Inter-model conversion times using SF1.

88 M. Chevalier et al.

In Fig. 5, we sumarize experimental results concerning the computation of the
OLAP cuboids at different levels of the OLAP lattice for SF1 using data from the
model MLC0. We report the time needed to compute the cuboid and the number of
records it contains.

We observe as expected that the number of records decreases from one level to the
lower level. The same is true for computation time. We need between 550 and 642 s to
compute the cuboids at the first level (using 3 dimensions). We need between 78 s and
480 s at the second layer (using 2 dimensions). And we only need between 2 and 23 s
to compute the cuboids at the third and fourth level (using 1 and 0 dimensions).

OLAP cube computation using the model MLC1 provides similar results. The
performance is significantly lower with the MLC2 model due to joins. These differ-
ences involve only the first layer of the OLAP lattice (the layer composed of cuboids
constructed using 3 dimensions), as the other layers can be computed from the latter
(aggregation functions used are all commutative [1]). Table 3 summarizes these dif-
ferences in computation time. We also report the full results for computing all lattice
aggregates using MLC0 in Fig. 5 where arrows show computation paths (e.g. the view

Fig. 5. Computation time and record count for each OLAP cuboid (letters are dimension names:
C=Customer, S=Supplier, D=Date, P=Part/Product).

Table 3. Computation time of the first layer of OLAP lattice (3 dimension combinations).

MLC1 MLC M2 MLC M0

CSD 556 s 4892 s 564 s
CSP 642 s 5487 s 664 s
CPD 573 s 4992 s 576 s
SPD 540 s 4471 s 561 s
Dimensions used: C = Customer,
S = Supplier, D = Date, P = Part
(i.e. Product)

Implementation of Multidimensional Databases in Column-Oriented NoSQL Systems 89

or cuboid CD can be computed from all cuboids that combine the C and D dimensions
(Customer and Date): CSD and CPD).

Discussion. We observe that comparable times are required to load data in one model
with the conversion times (except of MLC2 to MLC0). We also observe “reasonable3”
times for computing OLAP cuboids. These observations are important. At one hand,
we show that we can instantiate data warehouses in document-oriented data systems.
On the other, we can think of cuboids of OLAP cube lattice that can be computed in
parallel with a chosen data model.

6 Conclusion

In this paper, we studied instantiating multidimensional data warehouses using NoSQL
column-oriented systems. We proposed three approaches to implement column-oriented
logical model. Using a simple formalism that separate structures from values, we described
mappings from the conceptual level (described using a multidimensional conceptual
schema) to the logical level (described using NoSQL column-oriented logical schemas).

Our experimental work illustrates the instantiation of a data warehouse with each of
our three approaches. Each model has its own weaknesses and strengths. The shattered
model (MLC2) uses less disk space, but it is quite inefficient when it comes to
answering queries (most requiring joins in this case). The simple models MLC0 and
MLC1 do not show significant performance differences. Converting from one model to
another is shown to be easy and comparable in time to “data loading from scratch”.
One conversion is significantly very time consuming and corresponds to merging data
from multiple tables (MLC2) into one unique table. Interesting results were also
obtained when computing the OLAP cuboid lattice using the column-oriented models
and they are reasonable enough for a big data framework.

For future work, we will consider logical models in alternative NoSQL architec-
tures, i.e. document-oriented models as well as graph-oriented models. Moreover, after
exploring data warehouse instantiation across different NoSQL systems, we need to
generalize across all these logical models. We need a simple formalism to express
model differences and we need to compare models within each paradigm and across
paradigms (e.g. document versus column). Finally we intend to study others query
languages frameworks such as PIG or PHOENIX and compare them with Hive.

Acknowledgements. These studies are supported by the ANRT funding under CIFRE-
Capgemini partnership.

References

1. Bosworth, A., Gray, J., Layman, A., Pirahesh, H.: Data cube: a relational aggregation
operator generalizing group-by, cross-tab, and sub-totals. Technical Report MSR-TR-95-22,
Microsoft Research February 1995

3 “Reasonable time” for a Big Data environment running on commodity hardware (without an optical
fiber network between nodes, i.e. the recommended 10,000 GB/s).

90 M. Chevalier et al.

2. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A., Burrows, M., Chandra, T.,
Fikes, A., Gruber, R.E.: Bigtable: a distributed storage system for structured data. ACM
Trans. Comput. Syst. 26(2), 4:1–4:26 (2008)

3. Chaudhuri, S., Dayal, U.: An overview of data warehousing and olap technology. SIGMOD
Rec. 26, 65–74 (1997)

4. Chevalier, M., El Malki, M., Kopliku, A., Teste, O., Tournier, R.: Implementing
multidimensional data warehouses into NoSQL. In: 17th International Conference on
Enterprise Information Systems, vol. DISI

5. Chevalier, M., El Malki, M., Kopliku, A., Teste, O., Tournier, R.: Benchmark for OLAP on
NoSQL technologies, comparing NoSQL multidimensional data warehousing solutions. In:
9th International Conference on Research Challenges in Information Science (RCIS), IEEE

6. Colliat, G.: Olap, relational and multidimensional database systems. SIGMOD Rec. 25(3),
64–69 (1996). http://doi.acm.org/10.1145/234889.234901

7. Cuzzocrea, A., Bellatreche, L., Song, I.Y.: Data warehousing and olap over bigdata: current
challenges and future research directions. In: Proceedings of the Sixteenth International Workshop
on Data Warehousing and OLAP, pp. 67–70. DOLAP 2013, ACM, New York, NY, USA (2013)

8. Cuzzocrea, A., Song, I.Y., Davis, K.C.: Analytics over large-scale multidimensionaldata: the
big data revolution! In: Proceedings of the ACM 14th International Workshop on Data
Warehousing and OLAP, pp. 101–104. DOLAP 2011, ACM, New York, NY, USA (2011)

9. Dehdouh, K., Boussaid, O., Bentayeb, F.: Columnar NoSQL star schema benchmark. In: Ait
Ameur, Y., Bellatreche, L., Papadopoulos, G.A. (eds.) MEDI 2014. LNCS, vol. 8748,
pp. 281–288. Springer, Heidelberg (2014)

10. Golfarelli, M., Maio, D., Rizzi, S.: The dimensional fact model: a conceptual modelfor data
warehouses. Int. J. Coop. Inf. Syst. 7, 215–247 (1998)

11. Harter, T., Borthakur, D., Dong, S., Aiyer, A.S., Tang, L., Arpaci-Dusseau, A.C.,
Arpaci-Dusseau, R.H.: Analysis of hdfs under hbase: a facebook messages casestudy. In:
FAST, pp. 199–212 (2014)

12. Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Definitive Guide to Dimensional
Modeling. John Wiley & Sons, Inc. (2013)

13. Lakshman, A., Malik, P.: Cassandra: a decentralized structured storage system. SIGOPS
Oper. Syst. Rev. 44(2), 35–40 (2010)

14. Li, C.: Transforming relational database into hbase: a case study. In: International Conference
on Software Engineering and Service Sciences (ICSESS), IEEE, pp. 683–687 (2010)

15. O’Neil, P., O’Neil, E., Chen, X., Revilak, S.: The star schema benchmark and augmented
fact table indexing. In: Nambiar, R., Poess, M. (eds.) TPCTC 2009. LNCS, vol. 5895,
pp. 237–252. Springer, Heidelberg (2009)

16. Ravat, F., Teste, O., Tournier, R., Zuruh, G.: Algebraic and graphic languages for OLAP
manipulations. IJDWM 4(1), 17–46 (2008)

17. Stonebraker, M.: New opportunities for new sql. Commun. ACM 55(11), 10–11 (2012)
18. Vajk, T., Feher, P., Fekete, K., Charaf, H.: Denormalizing data into schema-free databases.

In: 4th International Conference on Cognitive Infocommunications (CogInfoCom), IEEE,
pp. 747–752 (2013)

19. Zhao, H., Ye, X.: A Practice of TPC-DS multidimensional implementation on NoSQL
database systems. In: Nambiar, R., Poess, M. (eds.) TPCTC 2013. LNCS, vol. 8391,
pp. 93–108. Springer, Heidelberg (2014)

Implementation of Multidimensional Databases in Column-Oriented NoSQL Systems 91

http://doi.acm.org/10.1145/234889.234901

	Implementation of Multidimensional Databases in Column-Oriented NoSQL Systems
	Abstract
	1 Introduction
	2 State of the Art
	3 Multidimensional Conceptual Model and Cube
	3.1 Conceptual Multidimensional Model
	3.2 OLAP Cube
	3.3 Case Study

	4 Modeling a Data Warehouse Using Column-Oriented Stores
	4.1 Column-Oriented Data Model Formalism
	4.2 Column-Oriented Models for Data Warehousing
	4.3 Mappings with the Conceptual Model

	5 Experiments
	5.1 Protocol
	5.2 Experimental Results

	6 Conclusion
	Acknowledgements
	References

