
Gaming TechnologiesGaming Technologies

Alexandre Topol

ENJMIN

Conservatoire National des Arts & Métiers

Qui suis-je ?Qui suis-je ?

� Ingénieur (2000) et docteur (2002) en Informatique

� Ancien programmeur Ubisoft (en 1996)

� Enseignant au CNAM et à l’ENJMIN

� Programmation 3D

� Langages de shading

� Physique

� Animation

� IHM

� …

� Chercheur au laboratoire CEDRIC

© Ubisoft – POD - 1997

50 years of evolution ...50 years of evolution ...

1989
Prince of Persia
Jordan Mechner
(Brøderbund) 1993

Doom
John Carmack
(Id Software)

1961
Spacewar!
Steve Russel
(MIT)

1972
PONG
Nolan Bushnell
(Atari)

... of games of games ...

1997
Quake 2
Id Software
(Activision)

2004
Far Cry
Crytec
(UbiSoft)

2008
Assasin’s Creed
(UbiSoft)

... and programming and programming ...

1960
BASIC

1972
C

1983
C++

... methods... methods

1995
3dfx ASM

1995
DirectX 1.0

1993
Mods

2002
Renderware

50 years of evolution50 years of evolution

� Why these evolutions ?

� For programming languages: need of more expressive power

� For game programming methods : need of less development time

� How did we get there ?

� To get closer to the heart of the game :

the gameplay

Game ComponentsGame Components

Content

+

Engine

Platform

+

Rules

Content ComponentsContent Components

story

scripting

lighting

Content

as well as …

• user interface

effects
sound

animationtexturing /
surfacing

Content

modeling level
design

visual
technologies

Content CreationContent Creation

� Method driven for some

� Tool driven for others

� Combination of tools forms “Art Pipeline”

� Character Pipeline

� 3D Model/Sculpting� 3D Model/Sculpting

� Animation/Rigging

� Skinning

� Texturing

� Lighting/Shading

� An artist often specializes on one part of pipeline

� Some tools in Game Engines (Emergent AnimationTool)

Game Engine ComponentsGame Engine Components

AI

Graphics

Engine as well as …

Plateforms

Physics

Audio

Networking
+

I/O

Engine as well as …

• installation

• patching

• resource management

• multithreading

• disk i/o

• state save/restore

Game EnginesGame Engines

Terrain Collision Character UIDynamics Sound FX

Fighting System FX System Game AI Script System

NPC System Virtual Agent Trading System Story

Game

Game Play
Layer

Hardware

3D Graphics API 2D API Input Device OS API

3D Scene Mngmt 2D Sprite Gamepad NetworkAudio

Terrain Collision Character UIDynamics Sound FX Engine
Layer

System
Layer

Games Engines Vs ΣΣΣΣ(APIs)Games Engines Vs ΣΣΣΣ(APIs)

� For instance : DirectX or { Ogre3D + OSG + Bullet + Wwise… }

� Each element is tightly embedded

� Same structures for different aspects

� No need to dupicate objects

� Same bounding boxes are used for both collision detection and
object cullingobject culling

� Most important: higher levels are gameplay oriented

� High level tools to design levels

� Graphical & audio aspects

� Triggers for audio or AI script

� Physics parameters

� …

Game EnginesGame Engines

� Studio chooses to build or buy
� Quake Source, Unreal engines
� Renderware, Gamebryo middlewares
� Often come with great authoring tools (level editors, etc.)

� Componentized software
� May buy specialized components

� How many people can write a physics engine?
� And how many studios can afford writing one ?
� Video codecs, etc

� Engine may be optimized for game genre/style
� Includes special features to answer special needs
� Terrain vs indoor scenes, camera management, …

Game EnginesGame Engines

� 3D graphics tools

� Physics engine

� Audio

� Animation

Cost: ranges
from open
source
(CrystalSpace)
to $100K+
(Unreal Engine)

� Typically tailored to a particular kind of game

� First person shooter (FPS)

� Real time strategy (RTS)

� massively multiplayer online role-playing game (MMORPG)

� Animation

� Character “AI”
Visual3D Architect .NET Screenshot RealmWare Corporation

Game EnginesGame Engines

Game EnginesGame Engines

Unreal Engine 3

Game EnginesGame Engines

� Engines:
� Unity3D

� UDK (vs Unreal Engine)

� Cry Engine

� Torque – Low cost set of engines (2D, 3D, 3D+Shaders), large dev community

� 3D Game Studio – Hundreds of games, C-script, many libraries of pre-made games

� OGRE – Scene-oriented, 3D engine, open source, Basic Physics

� Crystal Space – Used for Modeling and Simulation, Physics engine, True 6DOF

� Many others at http://www.devmaster.net/engines/

� Terrain Tools:
� L3DT – “Plugable” Terrain Generation engine, low cost, importing into Torque

� Terragen 2 – Amazing photorealistic terrains and terrain imagery – More real than real

� “Mod” tools:
� Return to Castle Wofenstein / Enemy Territory - Based upon an older version of the Quake engine.

� Quake III - One of the most heavily modified game ever. id has announced they will make the game code open source.

� Counter Strike - A great starting point for tactical & law enforcement sims and FPS

� Counter Strike: Source - A rebuild of the original but to use the Source engine.

Game Engines Features (Rendering)Game Engines Features (Rendering)

Alexandre Topol

ENJMIN

Conservatoire National des Arts & Métiers

Game Engines Features (almost Rendering)Game Engines Features (almost Rendering)

Alexandre Topol

ENJMIN

Conservatoire National des Arts & Métiers

Visibility ManagementVisibility Management

� Render cost should be proportional to what is seen !

� And not proportionnal to the complexity of the scene

� Don’t render objects that won’t be seen:

� Object outside viewing frustrum (� is clipping good ?)

� Objects behind others (� is ZBuffer good ?)� Objects behind others (� is ZBuffer good ?)

� Don’t render unnecessary details:

� Details too small to be performed

� LOD

�Pixel culling

CullingCulling

� Culling = throw away non-visible
things

� General strategies:

� Multi phase testing

� First cheap and coarse

� Then gradually increase
cost/precisioncost/precision

� Based on hierarchical bounding
volumes

Basic cullingBasic culling

� Backface culling

� Polygon culling (clipping)

Scene graphScene graph

� Cascading transformations and behaviors

� Basic algorithm

� From top node

� Render all children

� With visibility management on:

� Start from root node� Start from root node

� For each node

� Get bounding box

� if visible:

� Go down hierarchy

� esle:

� Cull

Bounding Volume HierarchiesBounding Volume Hierarchies

� BVHs

Bounding volumesBounding volumes

� BS – bounding sphere

� BS vs BS is the easiest way to compute intersections

� AABB – Axis Aligned Bounding box

� Boxes given a in the same global coordinate system

� OABB – Object Aligned Bounding Box

� Boxes given in a local coordinate system

BSP TreesBSP Trees

� Binary Space Partitioning Trees

� A 3D "binary search tree"

� Good for terrains

� BSP construction

� Choose a plane defined by a random polygon� Choose a plane defined by a random polygon

� Classify all polygons as in, behind or in front

� Split polygons if necessary

� Recurse

OctreesOctrees

� 3D "cube trees"

� Special case of BSP

Portals & PVSPortals & PVS

LODLOD

Game Engines Features (besides Rendering)Game Engines Features (besides Rendering)

Alexandre Topol

ENJMIN

Conservatoire National des Arts & Métiers

Interactive ProgramsInteractive Programs

Battlefield 2

� Games are interactive programs

� Moreover, they are typically immersive in some way

� What are the important features of an interactive program?

� Which features are particularly important for immersive software
like games?

Important FeaturesImportant Features

� User controls the action

� Control is “direct” and “immediate”

� Program provides constant feedback about its state� Program provides constant feedback about its state

� The user must know and understand what is happening

� The user must receive acknowledgment that their input was
received

Interactive Program StructureInteractive Program Structure

� Event driven programming
� Everything happens in

response to an event

� Events come from two sources:
� The user

Initialize

User Does Something

And/or � The system

� Events are also called
messages

� An event causes a message
to be sent…

And/or

System does Something

System Updates

User EventsUser Events

� Usually the OS manages user input

� Interrupts at the hardware level …

� Get converted into events in queues at the windowing level …

� It is generally up to the application to make use of the event
stream

� User interface toolkits have a variety of methods for managing � User interface toolkits have a variety of methods for managing
events

� The game engine gives easier manners to deal with user inputs

� There are two ways to get events: You can ask, or you can be
told

Polling for EventsPolling for Events

while (not done)

if (e = checkEvent())

process event

…

draw frame

� Most game engines provide a non-blocking event query

� Does not wait for an event, returns immediately if no events are ready

� What type of games might use this structure?

� Why wouldn’t you always use it?

draw frame

Waiting for EventsWaiting for Events

while (not done)

e = nextEvent();

process event

…

draw frame

� Most game engines provide a blocking event function

� Waits (blocks) until an event is available

� On what systems is this better than the previous method?

� What types of games is it most useful for?

Real-Time LoopReal-Time Loop

� At the core of games with animation is a real-time loop:

while (true)

process events

update animation

render

� What else might you need to do?

� The number of times this loop executes per second is the frame
rate

� # frames per second (fps)

LagLag

� Lag is the time between when a user does something and when they
see the result - also called latency

� Too much lag and causality is distorted

� With tight visual/motion coupling, too much lag makes people motion sick

� Too much lag makes it hard to target objects (and track them, and do all
sorts of other perceptual tasks)

� High variance in lag also makes interaction difficult� High variance in lag also makes interaction difficult

� Users can adjust to constant lag, but not variable lag

� From a psychological perspective, lag is the important variable

Computing LagComputing Lag

� Lag is NOT the time it takes
to compute 1 frame!

Process input

Update state

Render

Process input

Frame

time

Lag

Event

time

Process input

Update state

Render

Process input

Reducing LagReducing Lag

� Faster algorithms and hardware is the
obvious answer

� Designers choose a frame rate and put
as much into the game as they can
without going below the threshold

� Part of design documents
presented to the publisher

� Threshold assumes fastest � Threshold assumes fastest
hardware and all game
features turned on

� Options given to players to
reduce game features and
improve their frame rate

� There’s a resource budget: How much
time is dedicated to each aspect of the
game (graphics, AI, sound, …)

Decoupling ComputationDecoupling Computation

� It is most important to minimize lag between the user actions and their
direct consequences
� So the input/rendering loop must have low latency

� Lag between actions and other consequences may be less severe
� Time between input and the reaction of enemy can be greater

� Time to switch animations can be greater

� Technique: Update different parts of the game at different rates, which � Technique: Update different parts of the game at different rates, which
requires decoupling them
� For example, run graphics at 60fps, AI at 10fps

� Very common in real games

AnimationAnimation

� Key-frame animation

� Specification by hand

� Motion capture

� Recording motion

� Procedural / simulation

� Automatically generated� Automatically generated

� Combinations

� e.g. mocap + simulation
Jeff Lew

Key-framing (manual)Key-framing (manual)

� Requires a highly skilled user

� Poorly suited for interactive applications

� High quality / high expense

� Limited applicability

From Learning Maya 2.0

Motion Capture (recorded)Motion Capture (recorded)

� Markers/sensors placed on subject

� Time-consuming clean-up

� Reasonable quality / reasonable price

� Manipulation algorithms an active research area

MotionAnalysis / Performance Capture
Studio

Okan Arikan

SimulationSimulation

� Generate motion of objects using numerical simulation methods

SimulationSimulation

� Perceptual accuracy required

� Stability, easy of use, speed, robustness all important

� Control desirable

IGG

AnimationAnimation

Active CharactersPassive Objects

Simulation Keyframing Motion Capture

Character AnimationCharacter Animation

� Key Frame or Motion Capture

� Usually skeletal animation based

� Two Components:

� Skeleton motion

� Skin move

Jeff Lew

Character AnimationCharacter Animation

Upper Arm Lower Arm

Character AnimationCharacter Animation

� Skin motion

� Represent vertices in bone coordinate systems

� Move bone coordinate systems

� Skeleton motion

� Parameterized by the joint angles

Jeff Lew

Character AnimationCharacter Animation

� Skeletal motion is a function of time

� Representing this function

t

Forward KinematicsForward Kinematics

� Composite transformations down the hierarchy

Inverse KinematicsInverse Kinematics

� Given

� Root transformation

� Initial configuration

� Desired end point location

� Find

� Interior parameter settings� Interior parameter settings

Inverse KinematicsInverse Kinematics

�Why is the problem hard?

�Multiple solutions separated in configuration space

Inverse KinematicsInverse Kinematics

�Why is the problem hard?

�Solutions may not always exist

Physically Based AnimationPhysically Based Animation

Physically Based Animation
in Games
Physically Based Animation
in Games

Half Life 2 Max Payne 2

Fuel Black

Particle SystemsParticle Systems

� Single particles are very simple

� Large groups can produce interesting effects

� Supplement basic ballistic rules

� Collisions

� Interactions

� Force fields� Force fields

� Springs

� Others...

Karl Sims
SIGGRAPH 1990

Feldman, Klingner, O’Brien
SIGGRAPH 2005

� Basic governing equation

� is a sum of a number of things

� Gravity: constant downward force proportional to mass

� Simple drag: force proportional to negative velocity

� Particle interactions: particles mutually attract and/or repel

Basic ParticlesBasic Particles

� Particle interactions: particles mutually attract and/or repel

� Beware complexity!

� Force fields

� Wind forces

� User interaction

� Masses connected by springs

�Can be used to model

�Deformable objects

�Cloth

�Hair

�Rigid bodies

Spring Mass SystemsSpring Mass Systems

Hitman

Spring Mass SystemsSpring Mass Systems

� Concrete example

� The state

� Position, velocity

� The forces

� Gravity, springs

� The integration� The integration

AI in the Game LoopAI in the Game Loop

� AI is updated as part of the game loop, after user input, and
before rendering

� There are issues here:
� Which AI goes first?

� Does the AI run on every frame?

� Is the AI synchronized?

AI Module

AI Update StepAI Update Step

� The sensing phase determines the state
of the world

� May be very simple - state changes all
come by message

� Or complex - figure out what is visible,
where your team is, etc

� The thinking phase decides what to do
given the world

Sensing

given the world
� The core of AI

� The acting phase tells the animation what
to do

� Generally not interesting

Game

Engine
Thinking

Acting

AI by PollingAI by Polling

� The AI gets called at a fixed rate

� Senses: It looks to see what has changed in the world. For
instance:

� Queries what it can see

� Checks to see if its animation has finished running

� And then acts on it� And then acts on it

� Why is this generally inefficient?

Event Driven AIEvent Driven AI

� Event driven AI does everything in response to events in the world

� Events sent by message (basically, a function gets called when a message
arrives, just like a user interface)

� Example messages:

� A certain amount of time has passed, so update yourself

� You have heard a sound

� Someone has entered your field of view� Someone has entered your field of view

� Note that messages can completely replace sensing, but typically do
not. Why not?

� Real system are a mix - something changes, so you do some sensing

AI Techniques in GamesAI Techniques in Games

� Basic problem: Given the state of the world, what should I do?

� A wide range of solutions in games:
� Finite state machines, Decision trees, Rule based systems, Neural networks,

Fuzzy logic, …

� Even a wider range of solutions in the academic world:
� Complex planning systems, logic programming, genetic algorithms, Bayes-

nets, …nets, …

� Typically, too slow for games

Goals of Game AIGoals of Game AI

� Several goals:
� Goal driven - the AI decides what it should do, and then figures out how to do it

� Reactive - the AI responds immediately to changes in the world

� Knowledge intensive - the AI knows a lot about the world and how it behaves,
and embodies knowledge in its own behavior

� Characteristic - Embodies a believable, consistent character

� Fast and easy development� Fast and easy development

� Low CPU and memory usage

� These conflict in almost every way

Finite State Machines (FSMs)Finite State Machines (FSMs)

� A set of states that the agent can be in

� Connected by transitions that are triggered by a change in the world

� Normally represented as a directed graph, with the edges labeled with
the transition event

� Ubiquitous in computer game AI

Chase

Idle

Chase
Enemy

Attack
Enemy lost

Quake Bot ExampleQuake Bot Example

� Types of behavior to capture:
� Wander randomly if don’t see or hear an enemy

� When see enemy, attack

� When hear an enemy, chase enemy

� When die, respawn

� When health is low and see an enemy, retreat

� Extensions:� Extensions:
� When see power-ups during wandering, collect them

� Borrowed from John Laird and Mike van Lent’s GDC tutorial

Hierarchical FSMsHierarchical FSMs

� What if there is no simple action for a state?

� Expand a state into its own FSM, which explains what to do if in
that state

� Some events move you around the same level in the hierarchy,
some move you up a level

� When entering a state, have to choose a state for it’s child in the � When entering a state, have to choose a state for it’s child in the
hierarchy

� Set a default, and always go to that

� Or, random choice

� Depends on the nature of the behavior

Non-Deterministic Hierarchical
FSM (Markov Model)
Non-Deterministic Hierarchical
FSM (Markov Model)

� Adds variety to actions

� Have multiple transitions for the same
event

� Label each with a probability that it will be
taken

� Randomly choose a transition at run-time

� Markov Model: New state only depends
on the previous state

Attack

Approach

.3 on the previous state

Start

Aim &

Jump &

Shoot

Aim &

Slide Left

& Shoot

Aim &

Slide Right

& Shoot .3

.3

.4

.3

.3

.4

FSM AdvantagesFSM Advantages

� Very fast – one array access

� Expressive enough for simple behaviors or characters that are
intended to be “dumb”

� Can be compiled into compact data structure
� Dynamic memory: current state

� Static memory: state diagram – array implementation� Static memory: state diagram – array implementation

� Can create tools so non-programmer can build behavior

� Non-deterministic FSM can make behavior unpredictable

FSM DisadvantagesFSM Disadvantages

� Number of states can grow very fast
� Exponentially with number of events: s=2e

� Number of arcs can grow even faster: a=s2

� Propositional representation
� Difficult to put in “pick up the better powerup”, “attack the closest enemy”

� Expensive to count: Wait until the third time I see enemy, then attack� Expensive to count: Wait until the third time I see enemy, then attack

� Need extra events: First time seen, second time seen, and extra states to take care of
counting

Path FindingPath Finding

� Very common problem in games:
� In FPS: How does the AI get from room to room?

� In RTS: User clicks on units, tells them to go somewhere. How do
they get there? How do they avoid each other?

� Chase games, sports games, …

� Very expensive part of games� Very expensive part of games
� Lots of techniques that offer quality, robustness, speed trade-offs

� A* usual solution

Path Finding ProblemPath Finding Problem

� Problem Statement (Academic): Given a start point, A, and a goal point,
B, find a path from A to B that is clear
� Generally want to minimize a cost: distance, travel time, …

� Travel time depends on terrain, for instance

� May be complicated by dynamic changes: paths being blocked or removed

� May be complicated by unknowns – don’t have complete information

� Problem Statement (Games): Find a reasonable path that gets the � Problem Statement (Games): Find a reasonable path that gets the
object from A to B
� Reasonable may not be optimal – not shortest, for instance

� It may be OK to pass through things sometimes

� It may be OK to make mistakes and have to backtrack

A* ProblemsA* Problems

� Discrete Search:

� Must have simple paths to connect waypoints
� Typically use straight segments

� Have to be able to compute cost

� Must know that the object will not hit obstacles

� Leads unnatural paths� Leads unnatural paths
� Infinitely sharp corners

� Funny paths across grids

� Efficiency is not great

Starcraft

Chase the PointChase the Point

� Instead of tracking along the path, the agent chases a target
point that is moving along the path

� Start with the target on the path ahead of the agent

� At each step:

� Move the target along the path using linear interpolation� Move the target along the path using linear interpolation

� Move the agent toward the point location, keeping it a constant
distance away or moving the agent at the same speed

� Works best for driving or flying games

Chase the Point DemoChase the Point Demo

AudioAudio

High Level Engines
(MIDI, Samples…)

Authoring tool

� Generic Engine

Low Level Engine
(Audio Engine)

Spatialization

(MIDI, Samples…)
Authoring tool

Developper Sound
Designers

AudioAudio

� Creative Labs

ISACT IPS

OpenAL EAX

ISACT IPS

Eagle

Programers Sound
Designers

AudioAudio

� Microsoft

XACT
XACT

authoring

Direct Sound
(X3DAudio)

EAX

XACT authoring
tool

Eagle

Developpers Sound
Designers

FMusic
FMod

Designer

AudioAudio

� Firelight

FSound Spatialisation

FMusic
Designer

Developpers Sound
Designers

AudioAudio

AudioAudio

� Reverbation

AudioAudio

� Audible sphere

AudioAudio

� Occlusions and obstructions

Network problematicsNetwork problematics

� Lag/response time

� f°of distance ? Sure ! But not only

� f°of ressources & capacity (bandwidth, CPU, memory, …)

� Unreliable transmission

� Packet loss, packet reordering

� TCP stream Vs UDP datagram� TCP stream Vs UDP datagram

� Network topologies

� Time sync problem without a global clock

� Global Vs

� How to minimize the number of messages ?

� Prediction techniques : Dead reckoning

� Range of interest (RoI) : similar to culling and collision detection

