
Definitions and approaches to model quality in model-based software development

– A review of literature

Parastoo Mohagheghi *, Vegard Dehlen, Tor Neple

SINTEF, P.O. Box 124, Blindern, N-0314 OSLO, Norway

a r t i c l e i n f o

Article history:

Available online 21 April 2009

Keywords:

Systematic review

Modelling

Model quality

Model-driven development

UML

a b s t r a c t

More attention is paid to the quality of models along with the growing importance of modelling in soft-

ware development. We performed a systematic review of studies discussing model quality published

since 2000 to identify what model quality means and how it can be improved. From forty studies covered

in the review, six model quality goals were identified; i.e., correctness, completeness, consistency, com-

prehensibility, confinement and changeability. We further present six practices proposed for developing

high-quality models together with examples of empirical evidence. The contributions of the article are

identifying and classifying definitions of model quality and identifying gaps for future research.

Ó 2009 Elsevier B.V. All rights reserved.

1. Introduction

For years, modelling has been advocated as an important part of

software development in order to tackle complexity by providing

abstractions and hiding technical details. Due to the wide applica-

tion of modelling, numerous informal and formal approaches to

modelling have been developed, such as Entity Relationship Dia-

grams (ERD) for modelling data, Specification and Description Lan-

guage (SDL) for modelling telecommunication systems, formal

modelling languages such as Z and B, and the Unified Modeling

Language (UML) which is the most widely modelling language

used by industry today.

Modelling was initially applied for communication between

stakeholders and providing sketches (also called models or dia-

grams) of what a software systemmust do or its design. Nowadays,

industry tends to use models more and more for tasks other than

describing the system, for example simulation, generating test

cases and parts or all of the source code. The growing attention

on using models in software development has subsequently

brought the quality of models as a research area in forefront. In late

2000, the MDA (Model-Driven Architecture)1 initiative was

launched by OMG (Object Management Group) to promote using

models as the essential artefacts of software development. Followed

by MDD (Model-Driven Development) or MDE2 (Model-Driven

Engineering), we face a new paradigm in software development

where models are the primary software artefacts and transforma-

tions are the primary operations on models. In MDE, there is a lot

to consider regarding the quality of models to ensure that right arte-

facts are generated. Finally, since defects can be earlier detected and

corrected in models, improving the quality of models will ultimately

reduce maintenance costs [8].

The QiM (Quality in Model-driven engineering)3 project at SIN-

TEF is concerned with the quality of artefacts and activities in model-

based software development in general and MDE specifically. The

term ‘‘model-based software development” in this article covers a

spectrum of approaches where models are widely used in software

development for more than visualizing the source code or providing

informal sketches of design. Quality in model-based software devel-

opment covers the quality of models, modelling languages, model-

ling tools, modelling processes and even transformations

performed on models. One of the outcomes of the QiM project has

been identification of constructs needed to develop quality models

as described in [13]. With a ‘‘quality model” we mean a set of quality

goals (also called quality attributes or quality characteristics in the

literature) and their relations, accompanied by a set of practices or

means to achieve the quality goals, evaluation methods for evaluat-

ing quality goals and links to related literature. The focus of this arti-

cle is on identifying quality goals for models together with practices

in model-based software development that can improve the quality

of models, by performing a systematic review of literature on model

quality. By identifying practices we take a preventive approach to

software quality. Some tools and methods for assessing model qual-

ity and empirical evidence that are reported in the covered literature

are presented in this article as well.

0950-5849/$ - see front matter Ó 2009 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2009.04.004

* Corresponding author. Tel.: +47 22067497; fax: +47 22067350.

E-mail addresses: parastoo.mohagheghi@sintef.no (P. Mohagheghi), vegard.

dehlen@sintef.no (V. Dehlen), tor.neple@sintef.no (T. Neple).
1 http://www.omg.org/mda.
2 We use the term MDE in the remainder of this article to cover approaches where

development is mainly carried out using models at different abstraction levels and

possibly from different viewpoints, and where models provide a precise foundation

for refinement as well as transformation so that other artefacts are generated from

models; thus also covering MDA and MDD. 3 http://quality-mde.org/.

Information and Software Technology 51 (2009) 1646–1669

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier .com/locate / infsof



While model quality is covered in previous literature and

various quality models are proposed; among them in

[P15,P19,P22,P26,P38],4 these quality models have some short-

comings as discussed in [12] and none of them provide their clas-

sification of model quality goals based on an analysis of previous

work. Therefore we have performed a systematic review of litera-

ture discussing model quality to answer the following research

questions:

� RQ1. What quality goals are defined in literature for models in

model-based software development?

� RQ2. What practices are proposed to achieve or improve the above

quality goals?

� RQ3. What types of models and modelling approaches are covered

in literature?

Since UML is currently the most widely used modelling lan-

guage, UML models are the subject of most work related to the

quality of models. However, UML may be used in multiple ways;

from providing informal sketches to full system specification end

even as a programming language and extended for specific do-

mains. Therefore literature on UML models covers different ap-

proaches to modelling, while approaches where models play a

central role in software development are in focus here.

We emphasize that the focus of this article is on the quality of

models representing or describing software systems and not the

quality of system design or implementation; for example patterns

and practices for object-oriented design and metrics on the design

level. Unhelkar defines model quality as ‘‘the correctness and com-

pleteness of software models and their meanings” and separates it

from code quality and architecture quality [P38]. We share the

same view in this article. It is also clear that the quality of model-

ling languages, modelling tools and the expertise of people per-

forming modelling will impact the quality of developed models.

These issues are not covered in this article while some related

work is discussed in [9].

The remainder of this article is organized as follows. The review

process and the literature covered in this review are presented in

Section 2 and validity threats are discussed. In Section 3, we dis-

cuss what models are and what roles they have in software devel-

opment. Section 4 answers RQ1 by identifying six model quality

goals. These quality goals have been discussed previously in liter-

ature but never put together and defined in relation to one another.

In Section 5, we discuss RQ2 by presenting the practices proposed

in literature in order to improve the quality of models, together

with types of models and modelling approaches related to RQ3

and the results of empirical studies whenever reported. Section 6

provides a summary of the results while Section 7 is discussion. Fi-

nally, the article is concluded in Section 8, answers to research

questions are summarized and gaps for future research are

discussed.

2. The review process and the included literature

In [7], Kitchenham et al. provide guidelines for performing sys-

tematic literature reviews (or in short systematic reviews) in soft-

ware engineering. A systematic review is a means of evaluating

and interpreting all available research relevant to a particular re-

search question, topic area, or phenomenon of interest. A system-

atic review is therefore a type of ‘‘secondary study” that reviews

‘‘primary studies” relating to a specific research question. A pri-

mary study in [7] is defined as an empirical study investigating a

specific research question. The process of performing a systematic

review should be rigorous and auditable and include a review pro-

tocol. The above guidelines also discuss research question types in

systematic reviews which are mostly related to evaluate the effect,

cost or acceptance rate of a technology, thus reviewing empirical

studies with quantitative data. However, systematic reviews can

cover other research questions of interest to researchers as well.

The goal of this review is to provide definitions and classifications

while empirical evidence is also collected.

As discussed by Jørgensen and Shepperd, the process of defining

an appropriate classification for any purpose is usually a bottom-

up process by which the researchers read some studies, specify

some categories based on the papers they have read and their

own experience of the domain, then read more and refine the cat-

egories as necessary [5]. We therefore identified a set of publica-

tion channels where we had experienced that work on model

quality would be published. We searched these publication chan-

nels for papers published since 2000, starting the search in March

2007 and ending it in October 2007.

The following publication channels were fully searched for pa-

pers discussing quality of models and the model-driven approach:

� The Software and Systems Modeling (SoSyM) journal since 2002

(the first issue).

� Proceedings of the UML conference from 2000 to 2004, suc-

ceeded by the MoDELS conference.

� Proceedings of The European Conference on MDA-Foundations

and Applications (ECMDA-FA) started in 2005.

� Proceedings of the International Conference on Software Engi-

neering (ICSE).

� Proceedings of OOPSLA, Conference on Object-oriented Pro-

gramming Systems, Languages, and Applications.

� Proceedings of the Quality in Modelling (QiM) workshops at

MoDELS conference started in 2006.

The following publication channels were searched with key-

words; i.e., ‘‘quality + model”, ‘‘quality + model driven” and ‘‘model

driven + experience”:

� Journal of Systems and Software.

� Information and Software Technology Journal.

� Software Quality Journal.

� Empirical Software Engineering Journal.

� IEEE Xplore.

� ACM digital library.

During the search, we identified candidate papers by evaluating

their title and abstract. All candidates were registered in a file. We

then drew a map over the subjects covered in the papers (catego-

rization) and selected relevant papers to this review. The main cri-

terion for including a paper in this review is that the paper

provides definitions of model quality or discusses approaches to

improve model quality. Some additional papers were found in

the references of the detected papers and we also included a num-

ber of relevant books.

This review covers 40 ‘‘Primary studies (P)” (or in short ‘‘stud-

ies” in the remainder of the article5) related to model quality;

including 3 books, 1 Ph.D. thesis, 7 papers published in journals,

11 papers published in the proceedings of conferences, 17 papers

published in the proceedings of various workshops, and 1 paper pub-

lished online. One of the studies is published in 1994 (it is included

since it is an important work and is referred in several other studies),

2 in 2000, 3 in 2001, 2 in 2002, 1 in 2003, 11 in 2004, 4 in 2005, 9 in

4 References beginning with ‘‘P” refer to primary studies covered in this review as

given in Appendix I.

5 Not all the studies in our review are empirical studies and therefore a primary

study in this article refers to studies covered in this review.

P. Mohagheghi et al. / Information and Software Technology 51 (2009) 1646–1669 1647



2006, and 7 in 2007. It is clear that the subject of model quality has

gained more attention since 2004.

A list of included studies is given in Appendix I numbered from

P1 to P40, while Appendix II provides details on the number of

studies detected in each publication channel and a short descrip-

tion of studies is given in Table 1. Table 1 also shows modelling

language or modelling approach in each study with bold font.

Examples are ‘‘UML”, ‘‘MDE” and ‘‘quality model” (for studies dis-

cussing quality models). Not surprisingly, most of the studies are

concerned with the quality of UML models. However, studies in-

clude a spectrum of approaches to modelling; from capturing sys-

tem requirements to detailed design models, and to MDE including

UML profiles and domain-specific modelling languages.

We have followed the steps of defining a review protocol and

performing a systematic search as recommended in [7] while there

are some deviations from the process of a systematic review; i.e.,

(a) we have not registered all the studies detected by using key-

words but only the candidates for categorization; (b) we have

searched a limited set of publication channels; and (c) we have

only searched for recent publications. A more comprehensive re-

view may be performed later by using this review’s classifications

as search keys or focusing on single aspects of model quality.

The main threat to the validity of the results of the review is

publication bias; i.e., undetected studies when keywords are used

and the uncovered publication channels. To improve the cover-

age, other search engines and additional keywords may be used

which may detect new studies that can improve the results. How-

ever, we mean that the publication channels covered in this re-

view are highly relevant for the subject of review. One may also

search for studies published before 2000 or include more recent

studies. There are conferences and workshops dedicated to model

comprehension and model layout issues that are not covered in

this review and could be covered if this aspect of model quality

is in focus. A second threat is that we may have overlooked some

relevant studies during identification and categorization. Follow-

ing the steps of a systematic review as recommended in [7]

would increase the validity of identification and the confidence

in the results. After providing an initial classification of concepts,

other results are easier to be added if they were undetected in the

review process. Regarding the interest and knowledge of authors

of the subject, all authors work in projects that include MDE but

we are not aware of any biases when identifying and categorizing

papers.

3. Models and model-based software development

Models are representations of a (software) system at an abstract

level [17]. In this review we use the term ‘‘model” as a description

or representation of a software system or its environment for a cer-

tain purpose, developed using a modelling language and thus con-

forming to a metamodel. A model may consist of several

‘‘diagrams” where each diagram type gives a different view on

the described system. For example UML 2.0 has 13 diagram types

such as use case diagram, class diagram etc. In MDE, It is common

to model a system at different abstraction levels as well; thus hav-

ing several models of the same system.

The role of models varies a lot in software development ap-

proaches applied in companies. Fowler has identified three modes

of UML use6:

� UMLAsSketch: the emphasis of sketches is on selective commu-

nication rather than complete specification. These sketches

should be acceptable by users.

� UMLAsBlueprint: blueprints are developed by a designer whose

job is to build a detailed design for a programmer to code up and

thus UMLAsBlueprint requires correctness and completeness of

models to some degree.

� UMLAsProgrammingLanguage: semantics is added to UML mod-

els to make them executable. Here models should have the qual-

ity required for the purpose of execution.

Brown has also discussed the spectrum of modelling as pre-

sented in [18] and depicted in Fig. 1. The left hand side of the spec-

trum represents the traditional development without graphical

modelling – the code is the main artefact. The right hand side of

the spectrum represents the opposite of it, the code playing a sec-

ondary role and the development is done solely using models (e.g.,

utilizing executable modelling techniques). The model-centric ap-

proach is an ambitious goal of MDE as it still is based on code while

the models are the main artefacts. Most (or all, if possible) of the

code is generated from models; the developers, however, are given

a possibility to add the code and synchronize it with models. The

fact that the code can be altered after it is generated and it can

be synchronized is close to the idea of roundtrip engineering,

where the code and the model coexist and one is synchronized

once the other is updated. Such a usage scenario can be seen as

an advanced usage of models which is the extension of the idea

of basic modelling. The basic modelling represents a situation

when models are used as a documentation and as basic (usually

architectural only) sketches of the software to be built. The models

and the code coexist but the code is the main artefact which is used

in the course of software development. In the code visualization

scenario the code is the main artefact; models are generated auto-

matically and are not used to develop software, but to provide

means of understanding the code.

Staron writes that there is no sharp borderline between which

of the usage scenarios (except for ‘‘code only”) can be seen as a

realization of MDE [18]. In this article we refer to model-based

software development for approaches where models play a central

role in software development, which covers the right hand side of

Fig. 1. The covered literature covers approaches from basic model-

ling to full MDE, while most refer to modelling for more than pro-

viding sketches as in basic modelling.

When moving from the left hand to the right hand side of the

spectrum, quality requirements (or goals) for models change and

quality of models become more important. For example if models

and code coexist, models must be correct and complete (to some

degree) and also be easy to modify to keep them in sync with

the code. Thus quality goals vary depending on the purpose of

models.

MDE covers approaches where development is carried out using

models; often at different abstraction levels and from multiple

views. Although UML is the core language of the MDA initiative,

MDE does not rely on UML. In fact it is often impossible to express

the details of models required in a MDE approach in UML, which is

the reason for extending UML and developing ‘‘UML profiles” or

even Domain-Specific Modelling Languages (DSML). In this article

we therefore cover research on the quality of UML models in addi-

tion to research with MDE focus, including UML profiles and

DSMLs.

In MDE, models are subject of transformation to other models

or text such as source code. The OMGs’ MDA approach differs be-

tween CIM (Computational Independent Model), PIM (Platform

independent Model) and PSM (Platform Specific Model) where

more abstract models (CIM or PIM) can be transformed to PSM

or directly to the implementation. For example, it might not be

possible to completely specify an application as a PIM, but at least

a large part of the application’s static structure and interface design

should be captured and then translated into PSM or code [19]. We6 See his blog http://martinfowler.com/bliki/.

1648 P. Mohagheghi et al. / Information and Software Technology 51 (2009) 1646–1669



Table 1

A short summary of primary studies.

Ref. Short description

[P1] This book describes a collection of standards, conventions and guidelines for creating effective UML diagrams. It includes some general diagramming guidelines and

some guidelines for common UML elements and diagrams. It also presents the Agile Modelling (AM) approach

[P2] The authors have originally developed MCC+, a plug-in for Poseidon for model consistency checking using Description Logics (DL). In order to achieve portability, the

tool is upgraded into a tool for software product lines, MCC-SPL, that may be instantiated for several different UML modelling tools that admit the use of plug-ins

[P3] The first part of the paper describes heuristics and processes for creating semantically correct UML analysis and design models. It provides a set of conventions for

different UML diagrams. The second part of the paper briefly describes the internal research tool that was used to analyze Siemens models

[P4] This paper describes a CMMI (Capability Maturity Model Integration) compliant approach to measurement and analysis during a model-driven requirements

development process. It presents a set of metrics for UML requirement models that were used successfully on several Siemens projects, describing team dynamics,

project size and staffing, how the metrics were captured and used, and lessons learned

[P5] The authors define consistency problems in the context of component-based development with the KobrA method, and suggest a checking mechanism using

environment modelling. The approach is automated using the SPIN model checker

[P6] The authors evaluated quality differences between UML analysis and design models created with and without modelling conventions. Modelling conventions were

provided either as a list or a list supported by a tool for detection of their violation. The conclusion is that UML modelling conventions (regarding layout and syntax)

are unlikely to affect representational quality. Conventions are needed that clarify which types of information are relevant to particular future model usages; e.g., in

implementation and testing

[P7] The author proposes a set of criteria to improve the aesthetics of UML class diagrams based on HCI principles. The paper also includes a layout algorithm which

respects all these features and an implementation of a graph drawing framework which is able to produce drawings according to these criteria

[P8] The author proposes a set of aesthetic criteria for UML class diagrams and discusses the relation between these criteria, HCI and design aspects of object-oriented

software

[P9] This paper proposes a development methodology for distributed applications based on the principles and concepts of MDA. The paper identifies phases and activities

of an MDA-based development trajectory, and defines the roles and products of each activity in accordance with the Software Process Engineering Metamodel (SPEM)

[P10] The authors present a way to relate informal requirements, in form of UML use cases, to more formal specifications, written in OCL. The formal specification can

improve the informal understanding of the system by exposing gaps and ambiguities in the informal specification

[P11] This paper discusses ways to manage inconsistency (by analysis, monitoring and construction) and focuses on the second and third. The focus is on different views in

conceptual models. The MERMAID modelling tool is used. The use of the Command pattern allows to implement the consistency by monitoring approach, and the

use of complex commands and the Observer pattern allows for the realization of consistency by construction

[P12] The paper considers the problem of consistency within and between artefacts. Based on UML, a new langauge is formally defined with less number of views. OCL is

used to formulate both inter, and intra-consistency rules. These rules were partly implemented within OCL Evaluator tool

[P13] This paper describes the ongoing MDD research efforts at Philips, introducing VAMPIRE ÿ a light-weight model-driven approach to domain-specific software

development

[P14] The authors describe a process for constructing UML analysis model of an embedded system. The process uses goal models to capture requirements which also have

constraints specified in formally-analyzable natural language properties. UML class diagrams and state diagrams are used to model structure and behaviour of the

system and are transformed to formal specifications and formally analyzed for adherence to the behavioural properties captured in the goal model

[P15] The authors discuss different modelling approaches applied for conceptual modelling. They further extend the quality model of [P22] with new quality types such

as social quality and empirical quality. The identified means are also extended. The framework is used to evaluate the Object Modeling Technique (OMT) which is

the ancestor of UML for conceptual modelling, and shortcomings and strengths of the language are discussed

[P16] The paper elaborates on the role of stereotypes from the perspective of UML, and describes a controlled experiment aimed at evaluation of the role – in the context of

model understanding. The results of the experiment support the claim that stereotypes with graphical icons for their representation play a significant role in

comprehension of models and show the size of the improvement

[P17] The authors present a quality model for managing UML-based software development. The quality model includes purposes, quality characteristics and some metrics.

They further discuss experiences in applying the quality model to several industrial case studies. Finally a tool is presented that visualizes the quality model

[P18] This work reports on a controlled experiment to explore the effect of modelling conventions on UML diagrams on defect density and modelling effort. The results

indicate that decreased defect density is attainable at the cost of increased effort when using modelling conventions, and moreover, that this trade-off is increased if

tool-support is provided

[P19] The Ph.D. thesis gives a thorough discussion of UML usage, its diagrams and quality issues related to different purposes of modelling. Different quality models are also

presented before presenting own contribution which is described also in [P17]. Different experiments performed by Lange and others as in [P21,P20] are discussed

with more details to cover the aspect of quality defects

[P20] The authors report a multiple case study, in which 16 industrial UML models are explored for defects. The analysis results were discussed with the model developers

to gain deeper insights into the quality problems. The level of occurrence for several defect types is discussed. Additionally, the paper explores the influence of factors

such as model size, time pressure, and developers’ skill on model quality

[P21] In this paper the authors identify tasks of model-centric software engineering and information that is required to fulfil these tasks. They propose views to visualize

the information needed to support fulfilling the tasks, and metrics required to evaluate the status of tasks. The focus is on UML models

[P22] The authors examine attempts to define quality as it relates to conceptual models and propose their own quality modelwith three types of model quality: syntactic,

semantic and pragmatic quality. The authors also propose means to improve the quality of models, for example performing inspections and simulating models

[P23] The authors use a formal Object-Oriented specification Language (OOL) to formalize and combine UML diagrams. It is thus possible to transform the consistency of

UML models to the well-formedness of OOL specifications

[P24] The authors introduce a general framework for formalizing a subset of UML diagrams in terms of different formal languages based on a homomorphic mapping

between metamodels describing UML and the formal language. The resulting specifications enable execution and analysis through model checking

[P25] This white paper presents a set of guidelines for developing high-quality architecture models in UML

[P26] This paper describes a theoretically-based set of best practices for ensuring that each step of a modelling process is performed correctly, followed by a proof of

concept experiment demonstrating the utility of the method for producing a representation that closely reflects the real world. The paper introduces a quality model

which differs between perceptual quality, descriptive quality, semantic, syntactic, pragmatic and inferential quality

(continued on next page)

P. Mohagheghi et al. / Information and Software Technology 51 (2009) 1646–1669 1649



emphasize especially that future usage of models such as generat-

ing test cases, code (partially or totally) or simulation drive identi-

fying quality goals. In the next section we provide a definition of

model quality goals that are important in model-based software

development approaches depending on the purpose of models.

4. A classification of model quality goals (RQ1)

In [12] we have presented previous classifications of model

quality goals7 such as:

� The Lindland et al.’s quality framework has conceptual models

in mind (models of specification statements such as require-

ment models) and classifies model quality into syntax (adhering

to language rules), semantic (correct meaning and relations) and

pragmatic quality (comprehensibility by the intended users)

[P22].

� Additional model quality goals are added by Krogstie and

Sølvberg to the Lindland et al. framework; such as organizational

quality (whether a model fulfils the goals of modelling and that

all the goals of modelling are addressed through the model) and

technical pragmatic quality defined as being interpretable by

tools [P15].

� Unhelkar classifies model quality goals into syntax (with focus

on correctness), semantics or meaning (with focus on complete-

ness, consistency and representing the domain), and aesthetics

(with focus on symmetry and consistency in order to improve

the look and to help understanding) [P38]. His work is on UML

models.

� Nelson and Monarchi provide an overview of quality models and

discusses that modelling is a transformation from real world to

an implementation in multiple steps [P26]. In each step one

Code 

only

Code Code Code Code Code

Model

Code

visualization

Model

Basic

modelling

Model

Round-trip

engineering

Model

Model

centric

Model

Model

only

Fig. 1. Model-driven software development adoption spectrum, from [18].

Table 1 (continued)

Ref. Short description

[P27] This paper compares a model developed in The Object-Process Methodology (OPM), which has only a single diagram, to a model developed in Object Modeling

Technique (OMT) with several diagrams. OPM shows to be more effective in terms of a better system specification and some differences in comprehension are

observed

[P28] Five UML graphical notations are compared in this paper: for each, two semantically equivalent, yet syntactically different, variations were chosen from published

texts. The purpose is to evaluate which notations are easier to understand for humans

[P29] This paper reports on experiments assessing the effect of individual aesthetics in the application domain of UML diagrams. Subjects’ preferences for one diagram over

another were collected as quantitative data. Their stated reasons for their choice were collected as qualitative data. The work is similar to [P28]

[P30] Object-Process Methodology’s (OPM) single-diagram approach is compared with UMLs multi-diagram approach regarding the level of comprehension and the

quality of the constructed Web application models. The results suggest that OPM is better than UML in modelling the dynamics aspect of the Web applications. In

specifying structure and distribution aspects, there were no significant differences. The quality of the OPM models was superior to that of the corresponding UML

models

[P31] Business process models (diagrams) and object life cycles can provide two different views on behaviour of the same system, requiring that these diagrams are

consistent with each other. The paper proposes an approach to establish their consistency. Object state diagrams are used to generate life cycles for each object type

used in the process. The diagrams are developed in UML

[P32] The authors propose the integrated technique related to metrics in a MDD context. The following topics are covered; (1) the application of a meta modelling

technique to specify formally model-specific metrics, (2) the definition of metrics dealing with semantic aspects of models (semantic metrics) using domain

ontologies, and (3) the specification technique for the metrics of model transformations based on graph rewriting systems. They use class diagram plus OCL to

represent meta models with metrics definitions

[P33] After presenting the context of modelling and the rationales behind the decision to use DSM, the paper describes the approach to the problems of promotion, process

integration, usability and sustainable deployment of domain-specific solutions. The conclusion is that most challenges to deploy DSMs are not technical but human

by nature

[P34] In this paper, the key factors for the efficient accomplishment of the MDA are discussed by means of an industrial case study. The factors identified are grouped into

two categories – associated with usage and development of an MDA-based framework

[P35] The paper describes a set of controlled experiments which were aimed at evaluating the role of stereotypes in improving comprehension of UML models. The results

of the experiments show that stereotypes play a significant role in the comprehension of models and the improvement achieved both by students and industry

professionals

[P36] In model re-factoring behaviour should be preserved as specified by the model. This paper defines some behaviour preserving properties inherent to model re-

factorings. A UML profile is defined with stereotypes extending the UML dependency relationship and its specializations to express the preservation properties

between connected UML artefacts. Using a logic approach dependency relations are formalized and checked

[P37] This is an experience report emphasizing the synergy resulting from combining MDE and SPL (Software Product Line) technologies. The paper also discusses some

challenges with using domain-specific solutions

[P38] This book defines three aspects of a quality model: syntax, semantics and aesthetics. The book further defines three types of models: Models of Problem Spaces

(MOPS), Models of Solution Space (MOSC) and Models of Background Space (MOBS). For each type of model, the author discusses necessary diagrams and quality

check. Finally, For each type of UML diagrams, checklists are provided in these three dimensions

[P39] The authors report their experiences with a DSL for reinsurance business and financial accounting. One experience is that that soft constraints (i.e., warnings instead

of errors) are indispensable and should become an intrinsic part of DSLs

[P40] The authors discuss that model correctness is fundamentally important in MDE. They discuss techniques to prove model correctness which cover model checking and

automated theorem proving. Model analysis is applying semantic rules that look for situations that are semantically incorrect or suspicious. Different types of errors

that might be detected or not detected by model analysis are discussed. Model analysis techniques are applied to industry design models developed in UML and DSL

7 The terms quality goals, characteristics, attributes, properties etc. are all used in

literature and in different quality models. We use the term ‘‘quality goal” here to

cover them all.

1650 P. Mohagheghi et al. / Information and Software Technology 51 (2009) 1646–1669



should assure that the content is persevered. The author defines

perceptual, descriptive, semantic, syntactic, pragmatic, and inferen-

tial quality as quality types where some definitions match previ-

ous work in [P22] and [P15].

Although the above definitions are useful, we do not see them

often used in literature on model quality. Besides, the boundary be-

tween syntax and semantics is sometimes blurred [4] and these

terms are used inconsistently in literature. Therefore it is useful

to have a classification that is close to the concepts used in the lit-

erature related to modelling.

Based on the results of this review and our earlier work on

developing a quality model for MDE as presented in [9,10,12], we

have identified six classes of model quality goals that are intro-

duced in the remainder of this section. We also present related

work that point to the origin of the definitions.

C1-Correctness. Correctness is defined as:

(a) Including right elements and correct relations between

them, and including correct statements about the domain;

(b) Not violating rules and conventions; for example adhering to

language syntax (well-formedness or syntactic correctness

according to [P22]), style rules, naming guidelines or other

rules or conventions.

Several quality models define syntactic correctness relative to

the modelling language and semantic correctness relative to the do-

main and our understanding of it. Nelson and Monarchi write that

syntactic quality is determined by comparing the representation to

the language while the meaning of the elements should be pre-

served, called as semantic quality [P26].

Including right elements and relations is related to our under-

standing of the domain and is called semantic validity in the frame-

work of Lindland et al. [P22]. Berenbach calls a UML model

semantically correct if it includes correct relations and is complaint

with good practices and corporate standards [P3]. Unhelkar rather

talks of errors and mentions that CASE tools keep language syntax

errors to a minimum while the semantic aspect requires that the

diagrams faithfully represent the underlying reality [P38].

C2-Completeness. Completeness is defined as having all the nec-

essary information that is relevant [P22] and being detailed en-

ough according to the purpose of modelling.

Berenbach defines requirement and analysis models as com-

plete when they specify all the black-box behaviour of the mod-

elled entity [P3,P4]. Complete models can then be used to define

test cases and create project tasks. Others do not define complete-

ness bur rather discuss incompleteness as missing elements in

models [P27]. Mitchell writes that one should discover key prob-

lem domain concepts and make sure that these are modelled in

software; from system analysis models, through design and into

code [P25]. Nelson and Monarchi write that the perception trans-

formation should be complete and should not include anything

that is not in the real world [P26].

C3-Consistency. Consistency is defined as no contradictions in

the model. It covers consistency between views or diagrams that

belong to the same level of abstraction or development phase (hor-

izontal consistency), and between models or diagrams that repre-

sent the same aspect, but at different levels of abstraction or in

different development phases (vertical consistency). It also covers

semantic consistency between models; i.e., the same element does

not have multiple meanings in different diagrams or models.

Lange writes that the multi-diagram approach of UML entails

the risk for contradictions between diagrams, so called inconsis-

tencies. Besides, consistency defects can occur not only within a

model between different diagrams, but also between models at dif-

ferent abstraction levels [P19]. Consistency between diagrams or

models of a system is important for correct interpretation of them.

Ambler emphasizes consistency when modelling a system in the

sense that common elements have common names to avoid con-

fusing readers [P1]. Berenbach also discusses consistency of defini-

tions across all diagrams [P3]. Several other studies discuss

inconsistency problems and how to avoid them as discussed later

in Section 5.

C4-Comprehensibility. Comprehensibility is defined as being

understandable by the intended users; either human users or tools.

Lindland calls this pragmatic quality [P22], which is the term used

by Krogstie and Sølvberg [P15] and Nelson and Monarchi [P26] as

well.

For humans, several aspects impact comprehensibility such as

aesthetics of diagrams [P29,P38], organization of a model [P1,P3],

model simplicity or complexity [P1], using concepts familiar for

the users or selected from the domain ontology [P1,P25], and final-

ly using the correct type of diagram for the intended audience. For

example, Berenbach writes that UML is flexible regarding the

choice of diagrams for defining a process. Sequence, collaboration,

activity and state diagrams can all be used. However, he recom-

mends using sequence diagrams which is his experience are easiest

to read for non-technical reviewers [P3]. Ambler has a set of guide-

lines to improve readability of diagrams which are both related to

aesthetics (such as avoiding crossing lines) and organization of ele-

ments on a diagram [P1]. Unhelkar writes that once the syntax and

the semantics are correct, we need to consider the aesthetics of the

model [P38]. Aesthetics is simply style or ‘‘look and feel” which has

a bearing on the models readability or comprehensibility. Focus of

most literature is on comprehensibility by humans.

For tools, having a precise or formal syntax and formal seman-

tics helps analysis and generation. Krogstie and Sølveberg define

‘‘technical pragmatic quality” as to what extent tools can be con-

structed to understand the models [P15].

C5-Confinement. Confinement is defined as being in agreement

with the purpose of modelling and the type of system; such as

including relevant diagrams and being at the right abstraction le-

vel. A model is a description from which detail has been removed

intentionally. A confined model does not have unnecessary infor-

mation and is not more complex or detailed than necessary.

Ambler writes that models should be kept simple and one must

avoid details not necessary for the purpose of modelling [P1],

where the motivation is to improve readability. Other motivations

may be to avoid keeping several models in sync and reducing the

effort spent on modelling. Mitchell emphasizes that adding details

to a high-level diagram is different from adding design details

[P25]. The first makes an imprecise model more precise while

the second adds unnecessary information.

Developing the right model for the type of system or purpose

also depend on selecting the right modelling language. However,

our focus here is on model quality.

C6-Changeability. Changeability is defined as supporting

changes or improvements so that models can be changed or

evolved rapidly and continuously.

Changeability is not mentioned in previous work as a separate

quality goal although the need for updating models is obvious

and mentioned in several studies. It is required since both the do-

main and our understanding of it or requirements of the system

evolve with time. Mitchell writes that a system must resemble

the problem so that it may be changed when the problem domain

changes [P25]. Jonkers et al. write that the modelling discipline

should be close to the problem domain which enables simpler

maintenance and evolution of models [P13]. Berenbach recom-

mends avoiding early packaging since it implies partitioning and

may result in frequent reorganizations [P3].

Changeability should be supported by modelling languages and

modelling tools as well. For example Krogstie and Sølvberg have

P. Mohagheghi et al. / Information and Software Technology 51 (2009) 1646–1669 1651



identified modifiability of language as a practice that helps achiev-

ing validity and completeness [P15].

6C goals. We call the above quality goals collectively for the 6C

(model quality) goals. Fig. 2 shows the 6C goals and their relations

to other elements involved in modelling. Compared with the Lind-

land et al.’s framework in [P22], we have added modelling rules

and organization (defining the goals of modelling) to the

framework.

Fig. 3 is another view of the 6C goals that shows when in the

development process they are important. The figure is inspired

by the idea of viewing modelling as a set of transformations

[P26]. A model is a representation of a system and should be com-

plete relative to the system it wants to represent and according to

the modelling goals defined by the organization. It should also con-

tain correct relations between elements and correct meanings. All

these properties depend on the perception of the modeller of the

domain and the purpose of modelling. The developed models are

required to be correct relative to the language and modelling rules

or conventions, and be comprehensible for interpretation by hu-

mans or by tools for the purpose of generation, simulation or anal-

ysis. Of course precise definition of quality goals depends on the

context and the purpose of modelling, especially whether models

are used for implementation, testing and maintenance of systems.

Finally, we mean that other quality goals discussed in literature

can be satisfied if the 6C goals are in place. For example a model

that is correct, complete and consistent does not allow multiple

interpretations and all of the above goals are important in order

to support reusability of models. The 6C goals are identified based

on the analysis of literature covered in this review and the list may

therefore be modified or extended if new requirements are

detected.

In the next section we present the proposed approaches for

improving the quality of models which are referred to as ‘‘prac-

tices” in our quality model, together with the reported empirical

evidence.

5. Practices proposed to improve the quality ofmodels (RQ2 and

RQ3)

In this section we discuss the practices proposed in the studies

to be applied during modelling to improve the quality of models.

Most practices are concerned with error prevention, while some

also facilitate error detection. We have identified six classes of prac-

tices which are presented throughout this section together with

examples of empirical work. We also discuss their impact on the

6C goals introduced in Section 4. The six practices are divided in

two groups:

(a) The first group is related to ‘‘modelling process” and covers

having a model-based development process, using model-

ling conventions and the single-diagram approach8;

(b) The second group is related to ‘‘formal approaches and auto-

mation” and covers formal models, domain-specific solu-

tions and generating models from models.

Table 2 shows an overview of the studies covered in this review

ordered after the proposed practice. The impact of practices on

quality goals, the name of tool used or developed and the type of

empirical evidence is also given. There are four studies that cover

quality models in general and refer to most or all of the quality

goals; i.e., [P15,P22,P26,P38]. In Table 2 there is a column called

‘‘Demo or Empirical approach” where the values are:

� ‘‘–” for studies that are pure discussion. This covers three

studies.

� ‘‘Example” which shows that the proposed practice is applied on

an example application to demonstrate its usefulness. An exam-

ple is not empirical evidence. 16 studies include such examples.

� ‘‘Student experiment” indicates that a controlled experiment is

performed with students as subjects; described in 9 studies.

� ‘‘Industrial case” refers to describing experience from applying a

practice in industry. Industrial cases detected in this review do

not have the level of formality required of a ‘‘case study” as

defined in [20] such as a precise definition of research questions,

context, data collection methods and results. We found descrip-

tion or reference to industrial cases in 14 studies.

The sum is 42 since two studies cover both student experiments

and industrial cases; i.e., [P35,P19]. Although the focus of this sys-

tematic review has not been on collecting evidence and appraising

approaches, the data provide examples for evaluation and future

Environment

(Domain, 

Organization)

comprehensibility

Model

Language &

Modelling 

Rules

Tools

Human-

users

completeness

correctness

consistency

comprehensibility

confinement

correctness

changeability

Fig. 2. The 6C model quality goals.

Analysis &

generation 

tools

Real World 

(domain and 

organization)

Model

Modelling

language

Modelling 

tool

Modeller

<perceives>
<elicits & 
develops>

completeness

correctness

confinement

changeability

Rules

&

guidelines

<uses> <uses>

Code
com

prehensibility

co
m

pr
eh

en
si

bi
lit

y

correctness
corre

ctness

<uses> <generates>

Human users

(customers, 

developers, etc.)

<uses>

<uses>

<develops>

consistency

Fig. 3. Model-based software development with transformation of real world to

running software.

8 Selecting a single-diagram approach depends on the modelling language.

However, we chose to group it under modelling process since selecting suitable

languages and diagrams is often a step of modelling processes as discussed later.

1652 P. Mohagheghi et al. / Information and Software Technology 51 (2009) 1646–1669



Table 2

A classification of primary studies regarding practices and their impact on quality goals.

Ref. Type of model Practice and impact on quality goals Demo or

empirical

approach

Tool

Model-based software development

[P22,P15] Conceptual models Activities such as filtering and inspection should be performed to improve

comprehensibility by humans

Example –

[P26] Conceptual models A good modelling process will provide mechanisms for error prevention, detection

and correction. Descriptive quality (regarding correctness and completeness) can

be prevented by interviewing key informants. Semantic errors (correctness) are best

prevented through a cycle of data reduction, data display, and verification. Human

inspection (sometimes by multiple users) is also proposed to improve the models

regarding correctness, completeness and comprehensibility

Industrial

case

–

[P1] UML diagrams The Agile Modelling (AM) approach is proposed which uses agile practices to

increase agility (related to changeability)

Example –

[P17,P19] UML diagrams/metrics Quality goals are identified based on the purpose of models, which is related to

confinement; i.e., focus on purpose. Metrics are defined for different goals

Industrial

case

QualityView for collecting

metrics and visualization

[P21] MDE approach/metrics Metrics are collected from models and visualized in order to support

comprehension of diagrams, design quality evaluation and completeness

Industrial

case

MetricView Evolution for

collecting metrics and

visualization

[P32] MDE approach/metrics Metrics are proposed to be formally defined and collected from various models/

diagrams

Example –

[P40] MDE approach/SDL

and UML models

Model analysis techniques should be applied to improve correctness of models.

Rules can be defined in the model analysis tools

Industrial

case

–

[P9] MDE approach A traceability strategy should be defined to improve consistency. An activity is

defined for selecting a modelling language that is expressive enough for the domain

and the needs of modelling, which is related to confinement

Example –

[P34] MDE approach MDE process is focused on transformations: based on the requirements, the team

elicits requirements specific for the PIM and PSM transformations which in turn

form the basis for UML profiles definition. See later under UML profiles for benefits

Industrial

case

–

Modelling conventions

[P28,P29] UML class and

collaboration diagrams

Conventions are regarding layout of UML diagrams. Some notations perform better

than others on comprehensibility by humans

Student

experiment

–

[P7,P8] UML class diagrams Layout of diagrams is discussed related to comprehensibility by humans. Some

problems with comprehensibility may indicate poor design

Example Graph drawing framework

SugiBib

[P35] UML architectural

models

Models should be checked for having enough details (completeness) and cross-

checked for consistency. Correct organization of models helps comprehensibility

by humans. Identifying domain concepts and keeping analysis models free of

implementation helps confinement

– –

[P5] UML models in KobrA Conventions are proposed to improve inter-component and intra-component

consistency in the KobrA approach

Example SPIN model checker

[P3] UML analysis and

design models

Examples of conventions are given in Table III. Except changeability, all other

quality goals are mentioned. The tool checks models for some of the conventions

Example DesignAdvisor

[P1] UML diagrams Conventions are proposed that cover all quality goals. Examples are given in Table

III

Example –

[P38] UML diagrams Conventions are proposed that cover all quality goals. Examples are given in Table 3 Example –

[P4] UML use case and

other requirement

diagrams

Conventions are proposed to improve completeness of requirement models. These

can be defined as rules and be programmatically verified

Industry case DesignAdvisor

[P18] UML diagrams Conventions cover correctness and comprehensibility of models. Reduced defect

density is attainable at the cost of increased effort and this trade-off is increased if

tool-support is provided

Student

experiment

–

[P19,P20] UML diagrams An analysis of several industrial models for defects showed that lack of conventions

creates defects regarding consistency (for example in class names) and correctness

(for example defaults regarding visibility and naming are kept where they should be

changed)

Industrial

case

SDMetrics for collecting

metrics

[P6] UML analysis and

design models

The impact of modelling conventions on representational quality is not verified.

Conventions should be defined from the purpose of models; i.e., related to

confinement

Student

experiment

–

Single-diagram approach

[P27] OPM vs. UML models The single-diagram approach of OPM is compared to multiple diagrams of OMT.

Completeness and in some aspects comprehensibility by humans are improved.

Completeness is easier to verify as well

Student

experiment

–

[P30] OPM vs. UML models OPM models (single diagram) were more correct than UML models for Web

applications. Also OPM model was easier to comprehend than UML diagrams since

information is spread over several diagrams. Consistency of the model after an

update is also better with a single-diagram approach

Student

experiment

–

(continued on next page)

P. Mohagheghi et al. / Information and Software Technology 51 (2009) 1646–1669 1653



work. We introduce the six practices in Sections 5.1–5.6, and pro-

vide a summary in Section 5.7.

5.1. Model-based development process

Several authors discuss the advantages of developing a model-

based process or adapting the existing ones to MDE in order to im-

prove the quality of models and the generated assets. A good mod-

elling process will have mechanisms for preventing, detecting, and

correcting errors at each step from observation to elicitation to

analysis to final representation [P26]. Berenbach writes that in

his experience from industry (1) lack of process contributed to a

large number of errors since modellers do not have process that

guides where to start and conventions that provide uniformity;

(2) lack of quality assurance (for example reviews) led to a stagger-

ing number of errors; and (3) design models that originated from

analysis had fewer errors thon those originated as designs [P3].

Nelson and Monarchi event write that instead of evaluating the

Table 2 (continued)

Ref. Type of model Practice and impact on quality goals Demo or

empirical

approach

Tool

Formal models

[P15,P22] Conceptual models Formal syntax helps syntactic correctness. Formal semantics helps semantic

correctness (validity) and completeness. Exacutability of models helps

comprehensibility by humans

Example –

[P24] UML class and behaviour

diagrams

Formalizing UML diagrams allows model checking and simulation, which

helps comprehensibility by humans and consistency

Industrial case SPINs model checking

and simulation, Hydra

[P23] UML class and sequence

diagrams, state machines

Formalizing UML diagrams allows checking them for consistency Example –

[P11] Conceptual models Defining a formal syntax and semantics for different views and implementing

patterns such as the observer pattern improves consistency between

diagrams. A new language is defined that implements the proposal

– –

[P2] UML diagrams Consistency checks for UML diagrams are defined in Description Logic (DL) Example MCC+ (Model

Consistency Checker)

and MCC-SPL

[P14] UML diagrams and a goal

model

Behaviour consistency can be established between the goal model and UML

behavioural diagrams by transforming UML models to formal ones and

analyzing them for adherence to goals. SPIDER tool is used to translate natural

language constraints into formal specifications

Example Hydra for UML

formalization, SPIDER

[P10] UML use cases By adding OCL constraints to requirement models, ambiguity is removed from

informal specifications which improves correctness. One may also check that

the conditions are not contradictory which improves consistency. On the

other hand, formal specifications are more difficult to read for humans

(negative impact on comprehensibility)

Example –

[P12] Context model, use case model

and analysis model (based on

UML)

Adding OCL constraints allows us to check models for both intra and inter-

consistency by using tools

Example OCL Evaluator tool

UML Profiles and DSMLs

[P16,P35] UML profiles Stereotyped models are better understood (related to comprehensibility by

humans)

Student

experiments,

industrial case

–

[P34] UML profiles Effective usage of UML in industrial applications strives for its customization

for the specific purpose – thus the definition of a domain-specific modelling

language. Being suitable for a domain is classified as confinement.

Constraints can be added to models to define restrictions on the usage of base

modelling elements and thus improve correctness of the models

Industrial case –

[P36] UML profiles Adding OCL constraints to stereotypes in UML profiles restricts the wrong

usage of elements and thus improves correctness. UML profiles allow

defining correct transformation

Example RACOoN (Racer for

Consistency)

[P33,P37,P39] DSML DSMLs bridge communication gap between engineers and domain or business

experts; related to comprehensibility. Raising the abstraction level also

improves comprehensibility. A DSML includes only elements and diagrams

necessary for the domain and thus improves confinement. However,

developing a DSML and subsequently editors and code generators require

high programming expertise and updating it is costly

Industrial case –

[P13] DSML Modelling discipline should be close to the problem domain which enables

simpler maintenance and evolution of models; related to confinement, and

improved comprehensibility by domain experts

Industrial case –

Generating models/diagrams from other models/diagrams

[P31] UML diagrams Generating one diagram (here object life cycles) from another (object state

diagrams) improves completeness and consistency between models/

diagrams

Example –

[P11] Conceptual models The observer pattern is implemented which generates necessary elements in

diagrams when changes in one is observed. It improves consistency between

diagrams

– –

1654 P. Mohagheghi et al. / Information and Software Technology 51 (2009) 1646–1669



quality of the final representation, the representation process itself

can be evaluated [P26].

5.1.1. Examples and the impact on model quality

There have been several attempts to adapt existing develop-

ment processes to MDE by adding artefacts, activities and roles.

Firstly, Gavras et al. have identified phases and activities of a mod-

el-driven based development trajectory process that include

phases related to MDE artefacts and tasks [P9]. These phases pre-

cede the core development phase and include choosing technolo-

gies and developing needed artefacts (such as metamodels,

modelling language, transformations, validation rules and tools),

as depicted in Fig. 4. These artefacts are then deployed for use in

the project execution phase, as depicted in Fig. 5. The project exe-

cution phase has an activity related to validation of models. The

paper presents an outline of an example study that has been car-

ried out where the roles and products of each activity are defined

in accordance with the Software Process Engineering Metamodel

(SPEM), which is an OMG specification to describe software devel-

opment processes.9

In the same spirit as Gavras et al., Staron et al. have identified

activities in a MDE based development process [P34]. The defined

process is iterative and involves normal tasks of software develop-

ment such as requirements elicitation, development, test and

deployment; but with additional MDE activities. For example

based on the requirements, the team elicits requirements specific

for the PIM and PSM transformations which in turn form the basis

for UML profiles definition. There are seven phases in the MDE

development process as shown in Fig. 6. The process is developed

within an industrial case study.

The above two papers touch on an obviously important topic as

having control of the quality of the MDE tooling is necessary to

have control of the quality of systems being developed using the

tools. Staron et al. emphasize defining transformations prior to

profiles: the model-driven software development process is fo-

cused on transformations – thus it is transformations that are iden-

tified during the requirements elicitation phase. As profiles are

used as a means of making the transformations automated by pro-

viding storage for additional information, they are not considered

at this phase. Thus their process add identifying transformations

and defining profiles to the Gavras et al. process while it lacks

defining a traceability strategy.

There are also approaches that include metrics and tool support

for evaluating the progress and the quality of development arte-

facts. Firstly, Lange et al. have identified tasks of model-centric

software engineering (meaning that UML models are used for more

than describing the system) and the information that is required to

fulfil these tasks [P21]. Examples of tasks are program understand-

ing or completeness evaluation. A task may consist of a number of

questions about UML models. They propose to visualize the infor-

mation required to support fulfilling the tasks and have developed

a tool to support their approach on UML models; i.e., the Metric-

ViewEvolution tool. The authors write that feedback from indus-

trial case studies and a light-weight user experiment has been

positive. The advantage of this tool over other tools that collect

metrics from UML models is relating these metrics to performing

tasks in a model-centric development process.

Secondly, Berenbach proposes collecting metrics to evaluate

completeness of activities, in his approach related to requirement

modelling [P4]. The author proposes a model-centric requirement

Fig. 4. Preliminary preparation phase in an MDE-based project as defined in [P9].

Fig. 5. Project execution activities as defined in [P9].

Elicit requirements
for transformations

Deploy solution

Define 
transformations

Define profiles

Develop profiles

Develop 
transformations

test transformations
and profiles

start

Fig. 6. MDA-based framework development process defined by Staron et al. [P34].9 http://www.omg.org/technology/documents/formal/spem.htm.

P. Mohagheghi et al. / Information and Software Technology 51 (2009) 1646–1669 1655



process which covers steps for developing, reviewing and analyz-

ing requirement models, including a set of project and quality met-

rics. Berenbach writes that quality requirements are defined in a

way that they could be programmatically verified. For example

completeness of requirement models are defined as:

� Every leaf use case (a use case with no included, extending or

inheriting use cases) is concrete, with a special stereotype. The

stereotypes of functional and non-functional requirements were

used, and the stereotypes were given special icons for ease of

visual inspection.

� The leaf use cases become the high level requirements that are

subject to a formal review. The model is also subject to a review,

primarily to check for completeness and defects.

Quality metrics are defined towards requirement models and

measured frequently, giving the possibility to give insight into

the project progress. Examples are ‘‘the number of objects on dia-

grams” or ‘‘concrete use cases not defined”. It seems clear that hav-

ing a high quality requirements process is important, and having

ways of saying ‘‘how good” the requirements are is thus a clear

advantage.

In traditional development, it is quite common to perform code

review, so in the model-based development process, model re-

views should be natural as proposed in [P15,P22,P26]. Other qual-

ity assurance techniques such as collecting metrics by tools and

analyzing them should be part of a modelling process as well.

Although we do not intend to cover these techniques, we have re-

ferred to them whenever they are mentioned in the studies.

Some papers have also provided guidelines or conventions

regarding the modelling process. Examples are:

� Berenbach recommends the following [P3]: the early modelling

effort should cover the entire breadth of the domain. Identify

‘‘out of scope” use cases as early as possible. To support this,

all the actors in the model should be shown on the ‘‘context”

diagram. Discover business objects and their services through

use case definition with sequence diagrams. Elicit requirements

and processes by starting at interfaces and modelling inward.

� Mitchell warns against assuming that all domain modelling

must happen in the first phase, and all design in later phases

[P25]. I.e., an iterative approach is recommended; as also by

Ambler [P1].

Ambler has developed the Agile Modelling (AM)10 approach

which is a collection of practices to be used in modelling and docu-

mentation of software systems, as depicted in Fig. 7. Models in AM

are sketches developed for communication and not generation and

the focus of Ambler is on UML models. The interesting aspect is,

however, the focus of AM on change and agility in modelling which

is often ignored by other modelling processes. Many of the practices

apply for a model-based software development approach, such as:

� Apply the right artefact(s). Each artefact has its own specific

applications (related to confinement).

� Create simple content; the implication is that you should not

add additional aspects to your models unless they are justifiable

(related to confinement).

� Single source information; you should also model a concept

once and once only, storing the information in the best place

possible (to avoid inconsistency).

The promoters of developing process thus assume that the def-

inition of artefacts and procedures up-front will give a concise set

of artefacts. Mandating their use will reduce the use of ‘‘non-nor-

mative” techniques, and should make it easier to control quality.

It is also a requirement that processes should include quality assur-

ance activities, evaluating project progress and evaluating the

quality of the developed artefacts. Finally, it is also an advantage

if artefacts in one phase may be used to develop or generate arte-

facts in the next phase in order to achieve completeness and con-

sistency where one example is discussed in Section 5.6. For

example use cases may be used to identify objects and their states.

5.1.2. Examples of empirical evidence

Some of the proposed processes are either developed by indus-

try or are evaluated in industrial cases:

� Staron et al. performed a case in Volvo Information Technology

and concluded that the project was successful [P34].

� Lange et al. evaluated the feedback from industry regarding their

approach and tool as positive [P21].

Fig. 7. The best practices of Agile Modelling (AM) from [P1].

10 http://www.agilemodeling.com/.

1656 P. Mohagheghi et al. / Information and Software Technology 51 (2009) 1646–1669



T
a
b
le

3

E
x
a
m
p
le
s
o
f
m
o
d
e
ll
in
g
co

n
v
e
n
ti
o
n
s.
In

cl
a
ss
if
y
in
g
th
e
co

n
v
e
n
ti
o
n
s,
w
e
h
a
v
e
u
se
d
th
e
m
o
ti
v
a
ti
o
n
g
iv
e
n
b
y
th
e
a
u
th
o
r.
B
e
re
n
b
a
ch

h
a
s
m
a
rk
e
d
th
e
co

n
v
e
n
ti
o
n
s
v
e
ri
fi
a
b
le

b
y
to
o
ls
b
y
‘‘a
u
to
”
[P
3
].
N
o
ti
ce

th
a
t
se
le
ct
in
g
co

n
v
e
n
ti
o
n
s
d
e
p
e
n
d
o
n

th
e
p
u
rp
o
se

o
f
m
o
d
e
ll
in
g
.

C
o
rr
ec
tn
es
s

-
T
h
e
m
o
d
e
l
sh

o
u
ld

h
a
v
e
a
si
n
g
le

e
n
tr
y
p
o
in
t
(a
u
to
)
[P
3
]

-
E
x
te
n
d
in
g
u
se

ca
se

re
la
ti
o
n
sh

ip
s
ca
n
o
n
ly

e
x
is
t
b
e
tw

e
e
n
co

n
cr
e
te

u
se

ca
se
s
(a
u
to
)
[P
3
]

-
A
b
st
ra
ct

u
se

ca
se
s
m
u
st

b
e
re
a
li
z
e
d
w
it
h
in
cl
u
d
e
d
o
r
in
h
e
ri
ti
n
g
co

n
cr
e
te

u
se

ca
se
s
(a
u
to
)
[P
3
]

-
A
co

n
cr
e
te

u
se

ca
se

ca
n
n
o
t
in
cl
u
d
e
a
n
a
b
st
ra
ct

u
se

ca
se

(a
u
to
)
[P
3
]

-
A
n
in
te
rf
a
ce

sh
o
u
ld

o
n
ly

co
m
m
u
n
ic
a
te

w
it
h
a
co

n
cr
e
te

u
se

ca
se

(a
u
to
)
[P
3
]

-
E
v
e
ry

a
ct
o
r
in

th
e
m
o
d
e
l
sh

o
u
ld

co
m
m
u
n
ic
a
te

w
it
h
u
se

ca
se
s
th
ro
u
g
h
in
te
rf
a
ce
s
(a
u
to
)
[P
3
]

-
E
v
e
ry

st
a
te

w
it
h
n
o
o
u
tg
o
in
g
tr
a
n
si
ti
o
n
s
m
u
st

m
o
d
e
l
a
te
rm

in
a
l
st
a
te

in
th
e
w
o
rl
d
b
e
in
g
m
o
d
e
ll
e
d
[P
2
5
]

C
o
m
p
le
te
n
es
s

-
E
v
e
ry

d
ia
g
ra
m

sh
o
u
ld

h
a
v
e
a
n
a
ss
o
ci
a
te
d
d
e
sc
ri
p
ti
o
n
a
n
d
st
a
tu
s
to

d
e
te
ct

in
co

m
p
le
te

w
o
rk

(a
u
to
)
[P
3
]

-
E
v
e
ry

a
rt
e
fa
ct

in
a
U
M
L
m
o
d
e
l
sh

o
u
ld

b
e
v
is
ib
le

o
n
a
d
ia
g
ra
m

[P
3
]

-
E
v
e
ry

a
rt
e
fa
ct

in
a
U
M
L
m
o
d
e
l
sh

o
u
ld

b
e
v
is
ib
le

o
n
a
d
ia
g
ra
m

(i
n
o
rd
e
r
to

a
v
o
id

h
a
v
in
g
a
rt
e
fa
ct
s
th
a
t
a
re

n
o
t
u
se
d
in

a
m
o
d
e
l)
(a
u
to
)
[P
3
]

-
C
o
h
e
re
n
t
lo
w
-l
e
v
e
l
p
ro
ce
ss
e
s
sh

o
u
ld

b
e
d
e
fi
n
e
d
w
it
h
st
a
te

o
r
a
ct
iv
it
y
d
ia
g
ra
m
s
(a
u
to
)
[P
3
]

-
In
d
ic
a
te

u
n
k
n
o
w
n
s
w
it
h
a
q
u
e
st
io
n
m
a
rk

(i
n
o
rd
e
r
to

co
m
p
le
te

th
e
m

la
te
r)

[P
1
]

-
W

h
e
n
y
o
u
a
d
d
d
e
ta
il
to

a
m
o
d
e
l,
it

ca
n
b
e
d
e
ta
il
th
a
t
a
d
d
s
p
re
ci
si
o
n
to

a
n
im

p
re
ci
se

m
o
d
e
l.
A
d
d
in
g
d
e
ta
il
d
o
e
s
n
o
t
n
e
ce
ss
a
ri
ly

m
e
a
n
y
o
u
’v
e
m
o
v
e
d
to

a
lo
w
e
r
le
v
e
l
o
f
a
b
st
ra
ct
io
n
[P
2
5
]

C
o
n
si
st
en

cy

-
T
h
e
d
e
fi
n
it
io
n
o
f
a
u
se

ca
se

m
u
st

b
e
co

n
si
st
e
n
t
a
cr
o
ss

a
ll
d
ia
g
ra
m
s
d
e
fi
n
in
g
th
e
u
se

ca
se

(a
u
to
)
[P
3
]

-
E
v
e
ry

cl
a
ss

in
th
e
d
e
si
g
n
m
o
d
e
l
sh

o
u
ld

tr
a
ce

b
a
ck

to
a
u
se

ca
se

in
th
e
a
n
a
ly
si
s
m
o
d
e
l
(a
u
to
)
[P
3
]

-
A
n
in
te
rf
a
ce

cl
a
ss

sh
o
u
ld

d
e
ri
v
e
fr
o
m

a
n
a
n
a
ly
si
s
b
o
u
n
d
a
ry

cl
a
ss

(a
u
to
)
[P
3
]

-
E
v
e
ry

e
x
p
re
ss
io
n
in

a
sp

e
ci
fi
ca
ti
o
n
o
f
b
e
h
a
v
io
u
r
ca
n
b
e
cr
o
ss
-c
h
e
ck

e
d
to

co
n
ce
p
ts

in
a
m
o
d
e
l
o
f
st
ru

ct
u
re

[P
2
5
]

-
T
h
e
te
rm

s
in

e
v
e
ry

e
x
p
re
ss
io
n
in

th
e
p
re
-c
o
n
d
it
io
n
a
n
d
th
e
p
o
st
-c
o
n
d
it
io
n
m
u
st

b
e
d
e
fi
n
e
d
in

th
e
ty
p
e
m
o
d
e
l
[P
2
5
]

C
o
m
p
re
h
en

si
b
il
it
y
(i
n
cl
u
d
in
g
a
es
th
et
ic
s)

-
C
la
ss

n
a
m
e
sh

o
u
ld

b
e
a
si
n
g
u
la
r
n
o
u
n
[P
3
]

-
T
h
e
u
se

ca
se

sh
o
u
ld

b
e
n
a
m
e
d
fr
o
m

th
e
p
o
in
t
o
f
v
ie
w

o
f
cu

st
o
m
e
r
[P
3
]

-
U
se

se
q
u
e
n
ce

ra
th
e
r
th
a
n
co

ll
a
b
o
ra
ti
o
n
d
ia
g
ra
m
s
to

d
e
fi
n
e
o
n
e
th
re
a
d
/p
a
th

fo
r
a
p
ro
ce
ss

[P
3
]

-
A
v
o
id

cr
o
ss
in
g
li
n
e
s,
d
ia
g
o
n
a
l
o
r
cu

rv
e
d
li
n
e
s,
cl
o
se

li
n
e
s
a
n
d
si
z
e
d
sy
m
b
o
ls

[P
1
]

-
R
e
o
rg
a
n
iz
e
la
rg
e
d
ia
g
ra
m
s
in
to

se
v
e
ra
l
sm

a
ll
e
r
o
n
e
s.

P
re
fe
r
si
n
g
le
-p
a
g
e
d
ia
g
ra
m
s
[P
1
]

-
P
re
fe
r
w
e
ll
-k
n
o
w
n
n
o
ta
ti
o
n
o
v
e
r
e
so

te
ri
c
n
o
ta
ti
o
n
[P
1
]

-
A
p
p
ly

co
m
m
o
n
d
o
m
a
in

te
rm

in
o
lo
g
y
in

n
a
m
e
s
(e
sp

e
ci
a
ll
y
fo
r
re
q
u
ir
e
m
e
n
ts

a
n
d
a
n
a
ly
si
s
d
ia
g
ra
m
s)

a
n
d
a
p
p
ly

la
n
g
u
a
g
e
n
a
m
in
g
co

n
v
e
n
ti
o
n
s
o
n
d
e
si
g
n
d
ia
g
ra
m
s
[P
1
]

-
D
o
n
o
t
m
o
d
e
l
e
v
e
ry

d
e
p
e
n
d
e
n
cy

o
r
im

p
li
e
d
re
la
ti
o
n
sh

ip
s
(c
o
m
p
le
te
n
e
ss

h
e
re

is
in

co
n
fl
ic
t
w
it
h
co

m
p
re
h
e
n
si
b
il
it
y
)
[P
1
].
T
h
e
fo
cu

s
is

o
n
h
ig
h
-l
e
v
e
l
m
o
d
e
ls

-
T
h
e
d
e
p
th

o
f
in
h
e
ri
ta
n
ce

tr
e
e
s
p
a
rt
ia
ll
y
li
m
it
s
th
e
p
h
y
si
ca
l
d
im

e
n
si
o
n
s
o
f
th
e
d
ra
w
in
g
.
T
h
e
re
fo
re

th
e
se

tr
e
e
s
sh

o
u
ld

b
e
cl
e
a
rl
y
v
is
ib
le

a
n
d
sp

a
ti
a
ll
y
se
p
a
ra
te
d
fr
o
m

e
a
ch

o
th
e
r
[P
7
,P
8
]

-
C
la
ss

w
it
h
a
h
ig
h
n
u
m
b
e
r
o
f
o
u
tg
o
in
g
re
la
ti
o
n
s
in
d
ic
a
te

th
a
t
cl
a
ss
e
s
d
e
p
e
n
d
to
o
m
u
ch

o
n
o
th
e
r
cl
a
ss
e
s
[P
7
,P
8
].
(N

o
te
:
fr
o
m

m
o
d
e
l
q
u
a
li
ty

to
d
e
si
g
n
q
u
a
li
ty
)

C
o
n
fi
n
em

en
t

-
A
v
o
id

re
a
li
z
a
ti
o
n
re
la
ti
o
n
sh

ip
s
a
n
d
a
rt
e
fa
ct
s
in

th
e
a
n
a
ly
si
s
m
o
d
e
l.
A
n
a
ly
si
s
m
o
d
e
l
sh

o
u
ld

b
e
fr
e
e
o
f
re
a
li
z
a
ti
o
n
o
r
im

p
le
m
e
n
ta
ti
o
n
[P
3
]

-
A
u
se

ca
se

d
e
sc
ri
b
e
d
a
s
a
se
q
u
e
n
ce

o
f
in
te
ra
ct
io
n
s
n
e
ce
ss
a
ri
ly

in
cl
u
d
e
s
so

m
e
d
e
si
g
n
d
e
ci
si
o
n
s.

T
h
e
sa
m
e
u
se

ca
se

d
e
sc
ri
b
e
d
u
si
n
g
a
p
re
-c
o
n
d
it
io
n
a
n
d
a
p
o
st
-c
o
n
d
it
io
n
ca
n
b
e
fr
e
e
o
f
su

ch
d
e
si
g
n
d
e
ci
si
o
n
s
[P
2
5
]

-
A
p
p
ly

th
e
ri
g
h
t
a
rt
e
fa
ct
;
fo
r
e
x
a
m
p
le

a
v
o
id

m
o
d
e
ll
in
g
d
a
ta

a
n
d
u
se
r
in
te
rf
a
ce

co
m
p
o
n
e
n
ts

in
U
M
L
si
n
ce

U
M
L
d
o
e
s
n
o
t
y
e
t
a
d
d
re
ss

m
o
d
e
ll
in
g
th
e
se

[P
1
]

-
In
d
ic
a
te

v
is
ib
il
it
y
o
f
o
p
e
ra
ti
o
n
s
o
n
ly

in
th
e
d
e
si
g
n
m
o
d
e
l
si
n
ce

th
is

is
a
d
e
si
g
n
is
su

e
[P
1
]

-
C
h
e
ck

th
a
t
th
e
d
ia
g
ra
m
s
a
re

fr
e
e
fr
o
m

u
n
n
e
ce
ss
a
ry

o
b
je
ct
s
[P
3
8
]

-
C
h
e
ck

th
a
t
n
o
a
tt
ri
b
u
te
s
o
r
o
p
e
ra
ti
o
n
s
a
re

sh
o
w
n
in

o
b
je
ct

d
ia
g
ra
m
s
[P
3
8
]

C
h
a
n
g
ea

b
il
it
y

-
A
v
o
id

th
e
e
a
rl
y
u
se

o
f
p
a
ck

a
g
e
s
si
n
ce

th
e
y
w
il
l
re
q
u
ir
e
re
o
rg
a
n
iz
in
g
[P
3
]

P. Mohagheghi et al. / Information and Software Technology 51 (2009) 1646–1669 1657



� Berenbach reports that the proposed metrics for requirement

modelling were applied in three different projects at Siemens

and write that ‘‘as the team members gained experience with

the measurement tools and increased ability with the UML, their

productivity and confidence rose dramatically” [P4]. The

improvement is, however, not quantified.

The feedbacks are positive but we so far lack detailed case stud-

ies on the impact of development processes on the quality of

models.

5.2. Modelling conventions

Ambler defines conventions as ‘‘guidelines for creating effective

(UML) diagrams; based on proven principles that will lead to dia-

grams that are easier to understand and work with” [P1]. The term

‘‘convention” in the remainder of this article refers to modelling

rules and styles as well. Lange et al. have identified four categories

of conventions proposed for UML models [P18]:

� Design conventions; e.g., high cohesion and low coupling.

� Syntax conventions; Ambler presents a collection of 308 conven-

tions for the style of UML. His conventions aim at understand-

ability and consistency, and address naming issues to avoid

inconsistency, layout issues and the simplicity of design [P1].

� Diagram conventions; deal with issues related to the visual rep-

resentation of UML models in diagrams, such as those proposed

in [P29].

� Application-domain specific conventions; such as using stereo-

types in UML profiles.

Design conventions are related to the quality of design and are

not covered in this review. A good overview of such conventions

and rules is provided by the VIDE project (VIsualize all moDel-dri-

vEn programming) [16]. VIDE has performed an extensive review

of literature to identify quality defects in MDE and have identified

several classes of conventions such as design principles, anti-

guidelines, aging symptoms and modelling styles. Most of the con-

ventions are not specific to models but to software design in gen-

eral. Application-specific conventions are covered in Section 5.5

related to domain-specific approaches. Examples of other conven-

tions are presented in the remainder of this section and in Table 3.

Several studies mention that modelling conventions should be

integrated in a modelling process and be supported by tools to

be best effective.

5.2.1. Examples and the impact on model quality

We found several examples of conventions proposed for UML

models. Some would be relevant independent of the modelling lan-

guage. Examples are:

� In the book ‘‘The elements of UML 2.0 style”, Ambler describes a

collection of conventions for creating effective UML diagrams

[P1]. The book contains some general guidelines applicable to

any type of UML diagrams, guidelines for common UML model-

ling elements such as notes and stereotypes, and guidelines for

specific UML diagrams.

� In the book ‘‘Verification and validation for quality of UML 2.0

models”, Unhelkar provides guidelines for modelling and check-

lists to check UML diagrams for syntax, semantic and aesthetic

issues [P38].

� Berenbach presents a set of heuristics for creating ‘‘complete”

UML analysis and design models, which may further be analyzed

by tools [P3]. The proposed conventions cover model organiza-

tion in general, use case definitions, analysis models, business

object models, and design models, and affect most of the quality

goals. Several large models at Siemens were evaluated using the

DesignAdvisor tool which checks models for some of the pro-

posed conventions, while other conventions may be checked

by inspections.

� The KobrA method makes components the focus of the entire

software development process by adopting a product-line strat-

egy for their creation, maintenance, and deployment [1]. In

KobrA, each component is described by a suite of UML diagrams

as if it were an independent system in its own right. Choi and

Bunse write that the use of UML diagrams and the recursive nat-

ure of KobrA introduce two consistency issues in general; static

consistency and behavioural consistency. Static consistency

mainly refers to structural and naming/type consistency among

specifications describing different aspects of a component. A

total of 59 rules are proposed to improve static consistency

which can be ensured either by manual inspection or by

mechanical syntactic name checking. However, KobrA does not

include behaviour consistency rules. Choi and Bunse have there-

fore proposed some rules and propose to check them using the

model checker SPIN [P5].

� In a white paper by Mitchell, the author discusses some princi-

ples for creating high-quality models based on their experience

[P25]. The focus is mainly on cross-checking between architec-

tural models and other models (use case descriptions, object

models, and behaviour models such as state diagrams). The con-

ventions cover several quality goals such as comprehensibility

(regarding organization of a model, e.g., divide a system into

technical domains and subject domains) and completeness

(e.g., make sure these concepts are modelled in software, from

systems analysis models, through design, and into code). Some

of the conventions are related to improving the process of mod-

elling and were discussed in Section 5.1.

� Eichelberger criticises UML for the lack of aesthetic principles,

and UML tools for ignoring aesthetic principles [P7,P8]. The

author proposes a set of aesthetic criteria for UML class dia-

grams and discusses the relation between these criteria, HCI

(Human Computer Interaction) and design aspects of object-ori-

ented software. Some aesthetic problems indicate design prob-

lems, for example ‘‘a class with a high number of outgoing

relations indicate that the class depends on too many other clas-

ses” or ‘‘many classes at the borders of a package and few classes

in the centre imply coupling problems”.

Many of the proposed conventions may be enforced by tools,

but the problem today is that most modelling tools enforce syntac-

tical and aesthetic constraints very weakly and semantic con-

straints are not enforced at all [P17]. For error detection, one

may use tools such as DesignAdvisor or perform inspections.

5.2.2. Examples of empirical evidence

Lange et al. have performed a controlled experiment with stu-

dents as subjects on the effect of (UML) modelling conventions

on modelling effort and defect density [P18]. The conventions they

have included in the experiment yield correctness (e.g., an abstract

class should not be a leaf), comprehensibility (e.g., the number of

sequence diagrams per use case should indicate how well the func-

tionality of a use case is documented or described) and design is-

sues (e.g., low coupling). The experiment results indicate that

decreased defect density is attainable at the cost of increased effort

when using modelling conventions, and moreover, that this trade-

off is increased if tool-support is provided. Since we do not have

the full list of conventions and the detailed results of experiments,

it is difficult to say which types of errors are prevented.

In another student experiment described in [P6], DuBois et al.

investigated whether using conventions has any effect on represen-

tational quality of a model; defined as the clarity, completeness and

1658 P. Mohagheghi et al. / Information and Software Technology 51 (2009) 1646–1669



validity of the information the model is meant to represent. They

did not observe any difference in representational quality and con-

cluded that conventions should rather focus on identifying and

consistently representing those types of information required for

the model’s future usage, e.g., in implementation and testing.

Purchase et al. performed several student experiments on UML

diagrams and the students’ preference of one diagram over an-

other, checking layout issues such as the number of crosses, the

number of bends, use of colours or fonts and the width of diagrams,

specially for class and collaboration diagrams [P28]. Also five UML

experts performed the experiment. The comprehension task was

that of matching a given textual specification against a set of dia-

grams, indicating whether each diagram correctly matches the

specification or not. The set of diagrams included both correct

and incorrect diagrams. Both the response time and the accuracy

of responses were measured. Two examples of notations used in

the experiment are shown in Fig. 8. When matching diagrams to

the specifications, the (a) notations performed better, while when

identifying errors in the diagrams, the (b) notations which are less

intuitive and more ambiguous had better performance. It appears

that subjects are less at ease with these notations and are more

likely to detect errors in the diagrams.

There have also been experiments by Cox and Phalp on applying

conventions and styles to textual use cases [3,15]. The results

showed that their impact on quality is not always obvious and in

an experiment comparing two guideline sets, the leaner one per-

formed as well as the other.

Thus there is little empirical evidence in the covered literature

regarding the benefits of conventions and the results of few stu-

dent experiments are not conclusive. The quality impact of conven-

tions seems to depend on the task, the complexity of conventions

and tool support as well and empirical studies should describe

these factors better in order to help evaluating the usefulness

and cost.

Aircraft

Angle Monitor Flap Engine
Navigation

System

Measurement

Instruments

Measured

Values

Calculated

Values

Opening

Angle

Monitoring

Flaps Control

Data Sending

Velocity, Height

and Location

Calculation

Path 

Data

<features> <consists of>

of

2+

<yields>

.

<affects>

(1000, 1000)

<is enabled by>

Fig. 9. An OPD showing a top-level view of an avionics navigation system [P27].

Fig. 8. Examples of the notational variations used in the experiments of Purchase et al. [P28].

P. Mohagheghi et al. / Information and Software Technology 51 (2009) 1646–1669 1659



5.3. The single-diagram approach

The Object Modeling Technique (OMT), the main ancestor of the

Unified Modeling Language (UML), and UML are both approaches

that advocate modelling a system in several diagrams. The main

benefit is being able to focus on one aspect at a time. On the other

hand, it is easy to introduce inconsistencies between diagrams and

if a reader must concurrently refer to multiple diagrams in order to

understand an aspect, comprehensibility may decrease. Peleg and

Dori call this the model multiplicity problem [P27] (or to be more

consistent ‘‘the diagram multiplicity problem”). Lange also writes

that in its recent version, UML 2.0 provides thirteen diagram types,

such as the use case diagram, the class diagram and the activity

diagram. Each diagram type provides a different view on the de-

scribed system and may be of interest of a specific stakeholder.

Eventually all diagrams of a model describe the same system. Thus

there is overlap between diagrams which entails the risk for con-

tradictions between diagrams, so called inconsistency defects

[P19]. Reinhartz-Berger and Dori write that UML is unnecessarily

complex in many ways, and this inherent deficiency hinders coher-

ent modelling and comprehension of systems [P30].

Technical solutions that involve sophisticated CASE tools to im-

pose consistency alleviate manual consistency maintenance, but

they do not address the core problem of mental integration. Based

on the above arguments, some advocate use of single-diagram (Pe-

leg calls the approach for single model) approaches.

5.3.1. Examples and the impact on model quality

We found one example of a single-diagram approach discussed

and evaluated by student experiments in two papers; i.e., [P27]

and [P30]. OPM specifies both graphically and textually the sys-

tem’s static-structural and behavioural–procedural aspects

through a single unifying model. The elements of the OPM ontol-

ogy are entities (things and states) and links. A thing is a general-

ization of a (stateful) object and a process – the two basic building

blocks of any OPM-based system model. Links can be structural or

procedural. A structural link expresses a static relation between

two objects. Procedural links describe the behaviour of a system.

Fig. 9 shows an example from [P27]. Objects are shown with rect-

angles while processes are shown with ovals. Objects can partici-

pates in processes as shown by circles and receive events shown

by arrows.

One may, however, argue that UML and other modelling lan-

guages are multi-diagram because they are meant for industrial-

sized application, and that a single-diagram language just doesn’t

scale up to real-world use. Peleg and Dori write that in their expe-

rience with real-life applications, OPM is easily and naturally scal-

able. The scaling mechanism of OPM is based on detail-level

decomposition (which includes zooming in/out, unfolding/folding,

and state expressing/suppressing) rather than the viewpoint-based

decomposition (into separate diagrams for the static aspect, the

dynamic aspect, the functional aspect, etc.) which multi-diagram

languages employ. UML 2.0 supports also detail-level decomposi-

tion for example in sequence diagrams.

5.3.2. Examples of empirical evidence

Peleg and Dori write that two major open questions related to

diagram multiplicity vs. singularity have been (1) whether or not

a single diagram, rather than a combination of several diagrams,

enables the synthesis of a better system specification and (2)

which of the two alternative approaches yields a specification that

is easier to comprehend [P27]. They have addressed these two

questions through a double-blind controlled experiment with stu-

dents as subjects. The two approaches for modelling used in the

experiment are OPM and OMT extended with Timed Statecharts.

The students were divided in two groups: The participants of the

first group were asked to specify a system described textually in

the problem statement using OMT, while the participants in the

second group were asked to specify the same system using OPM.

The quality of the resulting specifications was thoroughly ana-

lyzed. The results showed that OPM was significantly better than

OMT in terms of overall specification quality; evaluated by the

number of errors in the specifications such as missing events or

missing feature.

For comprehension experiment, the first group received spec-

ifications of a system in OPM and the second in OMT and they

were requested to answer a questionnaire. The specification

comprehension results show that there were significant differ-

ences between the two methods in specific issues. The study is

inconclusive regarding overall specification comprehension.

Retrieving information from a single OMT diagram was easier

in some cases than retrieving the same information from the sin-

gle OPM model, which is more complex. The relatively large

number of issues for which no difference between the modelling

languages exists underlines the advantage of focusing on a single

diagram over spreading the specification information over sev-

eral diagrams.

Reinhartz-Berger and Dori have also performed an experiment

with students comparing UML and OPM for modelling of web

applications [P30]. The goal of the experiment was to compare

OPM to UML with respect to two aspects: (1) comprehension,

namely the level of comprehending a given model expressed in

each language, and (2) construction, i.e., the quality and ease of

modelling a given system in each language. In some questions

when evaluating comprehension, UML scored higher but the gen-

eral conclusion while OPM was easier to understand and apply

by untrained users.

Both experiments show that there are cases in which the exis-

tence of separate views can potentially help answering certain

questions about a specific aspect of a system, which is expressed

in only one type of diagram. But if answering a question needs

combining information from multiple diagrams, the single-dia-

gram approach scores higher. The single-diagram approach may

also help identifying incompleteness and inconsistency defects.

DSMLs tend to have fewer diagrams and thus solve the problems

introduced by using multiple diagram modelling languages. Unfor-

tunately, our search did not return any empirical evidence from

industry on the benefits of the single-diagram approach.

5.4. Formal models

The syntax and semantics of UML and some other modelling

languages are informal and imprecise, making analysis of models

difficult. Formal models have the advantage of being precise, sup-

port formal analysis and proof, and allow execution and genera-

tion. However, the usage of formal models has been limited: they

are not expressive enough for many real world applications, formal

models are often complex and hard to read, and constructing a for-

mal model may be a difficult, error prone and expensive process.

Since UML is almost the de-facto modelling language in many

domains and its informality is considered as a problem, many have

tried at making it formal; either by relating it to a formal language,

using OCL constraints and tools that may verify the constraints, or

developing UML profiles. We discuss domain-specific approaches

including UML profiles in Section 5.5. In most approaches, the

authors have focused on a few UML diagrams since formalizing

all diagrams would require a lot of effort and increase the complex-

ity of the problem.

5.4.1. UML in combination with formal languages

Under the multiple views of UML, the developers can decom-

pose a software design into smaller parts of manageable scales.

1660 P. Mohagheghi et al. / Information and Software Technology 51 (2009) 1646–1669



However, Liu et al. refer to literature that discusses several chal-

lenging issues that inevitably arise from such a multi-view and

multi-notational approach [P23]:

� Consistency: the models of various views need to be syntacti-

cally and semantically compatible with each other (i.e., horizon-

tal consistency).

� Transformation and evolution: a model must be semantically

consistent with its refinements (i.e., vertical consistency).

� Traceability: a change in the model of a particular view should

lead to corresponding consistent changes in the models of other

views.

� Integration: models of different views need to be seamlessly

integrated before software production.

Consistency checking and formal analysis of UML models have

been widely studied in recent years. The majority of approaches fo-

cus on the formalization of individual diagrams and only treat the

consistency between one or two views. Liu et al. have used the Ob-

ject-Oriented specification Language (OOL) to formalize UML sys-

tem models and check inter-diagram consistency. Class diagrams,

sequence diagrams and state machines are formalized with adding

OOL statements. Thus the consistency of UML models is trans-

formed to the well-formedness of OOL specifications.

In another paper, Haesen and Snoeck discuss the problems of

consistency checking in general, and horizontal consistency check-

ing in conceptual models specifically [P11]. They describe a meth-

od called MERODE which has tackled the problem of inconsistency

by defining a formal syntax and semantics for different views. In

order to keep this manageable, MERODE has drastically reduced

the number of views and concepts that can be used. It should

therefore be considered as a Domain-Specific Language (DSL) for

the conceptual modelling of management information systems.

Other than solving the inconsistency problem, advantages of

formalism are model execution, simulation and analysis. For exam-

ple, there have been various approaches to make formal specifica-

tion models, such as using executable Z or relating the formal

specification language B to UML (see [P10] for references). McUmb-

er and Cheng have developed a general framework for formalizing

a subset of UML diagrams in terms of different formal languages

based on a homomorphic mapping between metamodels describ-

ing UML and the formal language [P24]. This framework enables

the construction of a consistent set of rules for transforming UML

models into specifications in the formal language. The resulting

specifications derived from UML diagrams enable either execution

through simulation or analysis through model checking, using

existing tools. The paper includes an example of formalizing UML

in terms of Promela, the system description language for SPIN.

They have also constructed a prototype tool called ‘‘Hydra” and

evaluated it on an industrial case of an embedded system. Using

Hydra, they were able to move directly from UML class and behav-

iour diagrams to model checking and simulation. According to the

authors, SPINs model checking and simulation capabilities were

extremely useful during the behaviour analysis.

Konrad et al. have also translated UML models to formal speci-

fications using Hydra [P14]. UML models were extended with con-

straints to check their behaviour consistency for adherence to

constraints defined in a goal model. The work is part of a process

called i2MAP (incremental and iterative Modelling and Analysis

Process). Finally, Choi and Bunse propose translating UML dia-

grams into the input language of SPIN in order to check behaviour

consistency [P5].

5.4.2. Using OCL constraints

UML focused primarily on the diagrammatic elements and gave

meaning to those elements through English text. Later, a constraint

language was added to the specification, the Object Constraint Lan-

guage or OCL.11 OCL allows the integration of both well-formed-

ness rules and assertions (i.e., pre-conditions, post-conditions,

invariants) in UML models. The former are useful to validate espe-

cially the syntax of a UML model, whereas the latter can be

exploited to verify the conceptual constraints. Pre-conditions and

post-conditions provide a mechanism to specify the properties re-

quired before and after the execution of an operation, respectively,

but do not specify how that operation internally works. The recent

development of version 2 for both OCL and UML is a breakthrough

in order to completely define the semantics of a method in an ob-

ject-oriented system. In these latest versions, it is possible to define

a behaviour specification in OCL for any query operation (an oper-

ation without side-effects).

Adding OCL constraints allows analysis and verification by

tools. Giese and Heldal propose adding OCL constraints to the

post-conditions of UML models to expose gaps and ambiguities

in informal descriptions [P10]. Since formal models are harder to

read, the authors propose producing informal models from formal

ones; for example in a natural language.

Hnatkowska andWalkowiak discuss the problem of consistency

within and between artefacts [P12]. They have developed a devel-

opment approach called the Robust Software Development Profile

(RSDP) which introduces three models: context model, use case

model, and analysis model. They have used the OCL language to

formulate both inter, and intra-consistency rules for these models.

The rules are partly implemented within the OCL Evaluator tool.

The above-mentioned models were defined in Rational Rose and

Poseidon for UML, next they were transformed to XML format, par-

tially rewritten (if needed) and verified within the OCL Evaluator

tool. However, Rational Rose and Poseidon were not consistent

with the XMI MOF specification, which limits their usage for con-

sistency checking.

5.4.3. Examples of empirical evidence

In our survey on MDE experiences form industry presented in

[11], we described a case from Motorola that refers to the benefits

of formalism for catching defects by simulation. Otherwise, the

studies related to formal models include only examples to demon-

strate the practice. The only industrial case is mentioned in [P24]

where details are left out.

5.5. Domain-specific modelling languages and UML extensions

A domain consists of all possible statements that would be cor-

rect and relevant for solving a problem. Hence, every unique prob-

lem has a unique, usually, evolving domain [P22]. A Domain-

Specific Language (DSL) is a language designed to be useful for a

limited domain, in contrast to a General Programming Language

(GPL) that is supposed to be useful for multiple application do-

mains. This distinction is orthogonal to many other language clas-

sifications. For example, there are indifferently visual (graphical) or

textual GPLs or DSLs. Similarly DSLs and GPLs may fall under var-

ious categories of being object-oriented, event-oriented, rule-ori-

ented, function-oriented, etc. A Domain-Specific Modelling

Language (DSML) is thus a modelling language (usually visual) that

is used for Domain-Specific Modelling (DSM). DSM has been sub-

ject of a recent book by Kelly and Tolvanen [6] that we use here

for definitions. In DSM, modelling is done by using domain con-

cepts and a DSML also includes domain rules that prevent design-

ers from making illegal designs. The implementation details are

hidden and thus the level of abstraction is high. Domain-specific

models are directly transformed to code by using domain-specific

11 http://www.omg.org/technology/documents/modeling_spec_catalog.htm.

P. Mohagheghi et al. / Information and Software Technology 51 (2009) 1646–1669 1661



generators. Models can equally be used for executing, testing and

debugging applications since they are formal.

Also when using GPLs like UML, the base language may be ex-

tended with domain-specific enhancements using profiles that

let us add new attribute types for model elements, classify them

with stereotypes and have domain-specific constraints by using

OCL [6].

Thus DSMLs may be designed from scratch or by extending a

base language. In UML there are two different ways of describing

extensions; i.e., by MOF metamodel extensions and UML profiles

(by defining stereotypes with tags and constraints). Every ap-

proach has advantages and disadvantages:

� Designing a language from scratch or extending a metamodel

needs expertise in language engineering and is a lot of work;

also to develop an editor, code generator and modify tools. Safa

writes that DSLs with a limited user base are costly to develop

and maintain, and may have poor design or not be easy to use

[P33]. Trask et al. also mention the difficulties in changing a

metamodel and subsequently editors and code generators

[P37]. The advantage is the possibility to design a language that

meets the needs of a target domain.

� UML profiles offer a limited extension mechanism since totally

new types cannot be added to the language. Also UML profiles

cannot allow taking anything away from UML and one cannot

change the semantics of UML elements. The complexity of work-

ing with UML is therefore still in place. Besides, many tools do

not know how to deal with stereotyped elements. The advantage

is being able to use third-party modelling tools.

Although there is still weak support by tools for both ap-

proaches, they have gained attention by industry because of the

short-comings of GPLs and the promises of DSLs.

5.5.1. Examples and the impact on model quality

Several aspects of model quality are improved by using a DSML

or UML profile as discussed below (since profiles are also a first step

towards DSML, we will use the DSML expression to cover both):

� Comprehensibility by tools is improved by adding semantics to

an informal language which facilitates analysis and generation.

Stereotypes can also add additional properties – information –

to the stereotyped element [P34].

� Using a language close to the domain improves comprehensibil-

ity by humans, especially by non-technical domain experts. The

solution domain gets closer to the problem domain which also

improves maintainability of models. Profiles or DSM introduce

simplicity to the design [P39] and narrow the communicative

gap between engineering and business.

� Constraints can be added to models to define restrictions on the

usage of base modelling elements and thus improve correctness

of the models [P34]. These constraints may be defined in OCL

when using UML.

Note that a DSML is defined formally supported by some tool

[6]. Therefore the advantages of being formal are achieved, in addi-

tion to better comprehensibility and confinement (suitable for the

domain). The impact on changeability may be positive or negative

as discussed below.

5.5.2. Examples of empirical evidence

Empirical evidence reported in the studies cover student exper-

iments on the benefits of using stereotypes and industry experi-

ence reports on the benefits and risks of using DSMLs.

Kuzniarz et al. have performed a controlled experiment with

students as subjects in order to evaluate the influence of UML

stereotypes on the understanding of UML models [P16]. Two sets

of models were used in the experiment; one stereotyped and one

not. Understandability of the designs was measured by two depen-

dent variables: (1) total score (NRESP) – the number of correct an-

swers for each subject when asked questions about the design; (2)

time (TSEC) – the time (in seconds) which was required to fill in a

questionnaire on the design of the systems. The results of the

experiment support the claim that stereotypes with graphical

icons for their representation play a significant role in comprehen-

sion of models. The subjects understood the stereotyped models

better (the improvement achieved in this category was 52%) and

they were more consistent in their answers when the stereotypes

were involved. On average the relative amount of time for a correct

answer was shorter for the stereotyped model.

Staron et al. describe two additional experiments in order to

verify the credibility of the design of the above experiment before

replicating it in industry [P35]. The improvements were not signif-

icant but stereotypes helped in particular when it comes to having

correct answers. The industrial experiment was conducted at Volvo

Information Technology, at their site in Gothenburg, Sweden with

only four professionals. The number of correct answers was higher

for the stereotyped models but the time spent varied. Staron et al.

concluded that in general stereotypes improve the correctness of

understanding of UML models. Improvements were achieved in

all experiments – and half of the results were statistically

significant.

We have found several cases describing experience and benefits

of using UML profiles or DSMLs in industry, but often without

quantitative data. Two cases are mentioned here while other

examples are to be found in [11]. The benefits are often related

to improved generation of correct code by adding semantics in do-

main concepts, and improved understandability by using the lan-

guage of the domain:

� In a paper describing development at Phillips, Jonkers at al. write

that using small DSMLs, as opposed to a universal modelling lan-

guage such as UML, brings the modelling discipline much closer

to the domain experts and at the same time enables simpler

maintenance and evolution of such models, which contributes

to the desired productivity increase as well as to the agility of

the model-driven development [P13].

� In a paper from Matsushita Electric Works in Japan, Safa writes

that practitioners considered UMLs object-oriented notations

too far apart from the C procedural world used for implementa-

tion [P33]. A corporate language has been evolved naturally over

the years to express requirements, designs and implementations

matters. It has notations, conventions and semantics that map

precisely the problem domains, and it evolves incrementally

when the problem domain changes. The approach has risks as

well. Due to the metamodeling delay necessary to define visual

languages, editors and compilers, the domain-specific modelling

tool lags behind practice, so it is at risk of being perceived as

constraining, especially for practitioners used to drawing with

free-format whiteboards, pen and paper and general purpose

diagram tools like MicrosoftÓ PowerPoint.

5.6. Generating models or diagrams from other models or diagrams

Abstraction is one of the main techniques to handle complexity

of software development. In MDE, abstraction is combined with

stepwise refinement of models by transformations. Transforma-

tions are either Model-to-Model (M2M) or Model-to-Text (M2T).

A transformation takes one or several models as input and pro-

duces a model (or models) or text, as output. During transforma-

tion, output models are supplied with information not present in

1662 P. Mohagheghi et al. / Information and Software Technology 51 (2009) 1646–1669



the input model. An example of such information is the platform

concept during transformation of a PIM model into a PSM model.

Thus generation supports separation of concerns and adding de-

tails later; not by manual work but by applying transformations,

where links between these artefacts can be preserved and used

for analyzing the impact of changes, model debugging or synchro-

nizing artefacts.

Obviously, vertical consistency between models is improved

when they are generated from other models. Transformations

may also be applied between diagrams on the same abstraction le-

vel to improve horizontal consistency in multi-diagram modelling

approaches. Haesen and Snoeck discuss that consistency checking

can be done by analysis (an algorithm detects inconsistencies be-

tween deliverables), by monitoring (meaning that a tool has a mon-

itoring facility that checks every new specification), and by

construction or generation (meaning that a tool generates one deliv-

erable from another and guarantees semantic consistency) [P11].

While monitoring is useful for error prevention and analysis for er-

ror detection, the focus of this section is on generation for error

prevention.

5.6.1. Examples and the impact on model quality

Ryndina et al. write that there are two approaches for solving

the horizontal consistency problem between two diagrams [P31].

One is to determine the overlap between two given diagrams

where consistency conditions can be defined and checked. The

problem with this approach is that the two diagrams are defined

in two modelling languages and consistency conditions should be

defined across language boundaries. The second approach is to

generate one diagram from the other. With this approach, consis-

tency conditions are defined between diagrams expressed in the

same language. Fig. 10 shows the two approaches applied on

business process and object life cycle diagrams. The latter ap-

proach is beneficial according to the writers, as defining consis-

tency conditions and interpreting inconsistencies between two

diagrams in the same language is easier than across language

boundaries. A prototype tool can verify that consistency condi-

tions are held.

Haesen and Snoeck have proposed to use the observer pattern

to achieve consistency between different views in conceptual mod-

els: as the user changes a specification in one view, all other views

are informed about the modification [P11]. For example the com-

mand of adding an object type creates the object type and the de-

fault finite state machine for that object type. As a result, the

developer will initially receive a ready-made default finite state

machine in which (s)he can add, modify or delete states and tran-

sitions to model the behaviour. This is an example of achieving

consistency by construction using their terminology.

5.6.2. Examples of empirical evidence

Studies covered in this review included only examples on

applying the practice but no empirical evidence.

5.7. Summary of the section

This section provided an overview of practices proposed to im-

prove the quality of models. We identified six classes of practices

and discussed them with examples, their impact on model quality

and examples of empirical studies. While some practices are eval-

uated by experiments and industrial cases, others are only demon-

strated on examples. Table 4 summarizes this section where ‘‘+”

indicates benefits and ‘‘!” indicates drawbacks of practices.

Practices can of course be combined, for example DSMLs often

include constraints and formal semantics to prevent errors and

facilitate generation, and the number of diagrams is often reduced.

Having a model-based development process that includes guide-

lines for modelling will help developers to set the practice in life.

Using a practice will sometimes enhance one quality goal while

affecting another one negatively. For example formal models are

easier to analyze and verify by tools, but are not easier to compre-

hend by humans. Implementing each practice has some cost which

should be weighted against the benefits to find the balance. In the

next section we discuss the impact of practices on the 6C goals

introduced in Section 4.

6. Integrating the results

We introduced the 6C model quality goals in Section 4 and the

six practices proposed to improve the quality of models in Section

5, while the impact of practices on the 6C goals are summarized in

this section.

6.1. The impact of the proposed practices on the 6C goals

For each quality goal, the two classes of practices are discussed.

We remind that the first group related to ‘‘modelling process” in-

UML AD

Given BPM
BPM with

object states

BPM = Business Process Model

OLC = Object Life Cycle

1. Make object

states explicit

Given OLCs Generated OLCs

2. Generate 

object life cycles

3. Check consistency 

conditions

4. Determine 

consistency

UML SD

Fig. 10. Solution overview in [P31].

P. Mohagheghi et al. / Information and Software Technology 51 (2009) 1646–1669 1663



cludes model-based development process, modelling conventions

and the single-diagram approach, while the second group related

to ‘‘formal approaches and automation” covers formal models, do-

main-specific solutions and generation.

C1-Correctness. Regarding modelling process, several studies

propose using conventions in order to prevent syntactic and

semantic errors [P1,P3,P38], while Unhelkar [P38] also provides

checklists to check the correctness of UML diagrams. Berenbach

proposes enforcing some of the conventions by tool [P3]. Perform-

ing inspections [P15,P22,P26] and model analysis techniques [P40]

are also proposed for quality assurance of models.

Regarding formal approaches and automation, Giese and Heldal

[P10], Staron et al. [P34] and van Der Straeten [P36] propose using

OCL constraints in order to remove semantic ambiguities from

models and prevent wrong usage of elements. Using stereotypes

[P34] and defining formal semantic of elements (for example in a

DSML) are also techniques that remove ambiguity of informal

semantics and thus improve semantic correctness. McUmber and

Cheng introduce a framework for formalizing a subset of UML

diagrams by mapping between metamodels describing UML and

the formal language to be able to use model checking and simula-

tion tools, for example SPIN to check for correctness and other

quality goals such as consistency [P24].

C2-Completeness. Regarding modelling process, some research

hints that single-diagram approaches have fewer defects regarding

missing elements compared to the multi-diagram approaches

[P27]. Conventions provided as guidelines, checklists or best prac-

tices in modelling processes are also proposed to improve com-

pleteness of models, as in [P1,P3,P25,P38]. Examples are to be

found in Table 3. Tool-support is discussed by Berenbach who pro-

poses defining completeness rules that can be programmatically

verified [P4] while metrics for completeness evaluation are pro-

posed by Berenbach [P4] and Lange et al. [P21] who propose defin-

ing a special task for completeness evaluation that is performed

based on metrics collected from models.

Regarding formal approaches and automation, generating

models from other models is a technique for achieving com-

pleteness with an example given in [P31] where object models

are generated from process models with all the necessary

states.

Table 4

The benefits (marked with ‘‘+”) and drawbacks (marked with ‘‘!”) of the proposed practices and the state of evidence from empirical studies in the covered literature.

Approach Main benefits or drawbacks Empirical evidence

Related to modelling process

Model-based development process + Having a development process adapted to MDE is impor-

tant for controlling the quality of activities and artefacts

and avoiding non-uniformity

+ Metrics may be added to evaluate progress and the qual-

ity of artefacts

+ Best practices may be included in the process

! Developing or updating a process and training people on

the process require effort

! Having a process does not guarantee that it is followed

Although there is agreement in experience reports from

industry regarding the importance and positive effect of

process, the impact of processes on the productivity or

quality is not properly documented

Modelling conventions + Easy to provide based on experience and literature

! Increases effort; should not be overwhelming

Student experiments show that tool support for enforcing

and checking of conventions is important

The impact on error prevention or detection is not always

straightforward to predict. For example less intuitive

conventions may be better for error detection

Single-diagram approach + It is easier to detect incompleteness if the information is

presented in one diagram

! All information gathered in one diagram may improve

comprehensibility compared to cases where information

from multiple diagrams must be integrated for

comprehension

The method is evaluated in student experiments that confirm

single-diagram models have fewer errors while

comprehensibility depends on the task

Related to formal approaches and automation

Formal models + Support for formal analysis and proof, execution and

generation

+ Model checking and simulation tools are available

! Formal models are more difficult to comprehend. How-

ever, they may be combined with informal ones

! Formality comes at a cost

Only described by examples

DSMLs and UML extensions + Models developed using domain concepts are easier to

comprehend for domain experts

+ Enough details for transformations may be added and

models may be made formal

+ Constraints may be added to prevent wrong usage

! Developing a language and supporting editors and tools

need expertise and is costly

A number of student experiments are performed which verify

the improvement in comprehensibility by suing UML

stereotypes, although not always significant

DSMLs are receiving growing attention by industry, with

positive feedback. However, keeping the language updated

with the domain is difficult

Generating models/diagrams from

models/diagrams

+ Supports separation of concerns since details may be

added during transformation (like in DSLs)

+ May be applied to improve both horizontal and vertical

consistency between artefacts

! Transformations are costly and should preserve model

characteristics

! Transformation is a core practice in MDE supported by

tools while the challenges of traceability and synchroniz-

ing artefacts are not properly addressed

Discussed by examples

1664 P. Mohagheghi et al. / Information and Software Technology 51 (2009) 1646–1669



C3-Consistency. Regarding modelling process, conventions

regarding consistency between diagrams are proposed in [P1,P5,P3,

P25,P38] with examples given in Table 3. Gavras et al. propose

defining a traceability strategy in the modelling process, which

refers to the ability to establish relationships between model

concepts that represent the same concept in different models

[P9].

Regarding formal approaches and automation, consistency has

received more attention in literature than correctness and com-

pleteness since it may be improved to a large extent by using

tools and formal languages, for example inter- and intra-consis-

tency rules may be checked by OCL evaluator tools [P12]. Consis-

tency constraints may also de defined in a DSML [P39] and

consistency conditions can be checked during transformations.

By using a formal language, consistency of UML diagrams can

be transformed to well-formedness of the language specifications

[P11,P23]. Finally, Haesen and Snoeck propose using tools that

implement the observer patterns and generate the necessary ele-

ments when diagrams are updated to keep diagrams consistent

with one another [P11].

C4-Comprehensibility. Regarding modelling process and when it

comes to comprehensibility by humans, we found conventions for

naming and structuring of models [P1,P3,P25] (since information is

easier to locate in a proper-named and well-organized model), aes-

thetics of diagrams [P1,P28,P29,P7], closeness to users’ view [P3]

and to the problem domain [P25], and documentation of models

[P1,P3]. Examples can be found in Table 3. Finally, experiments

on the single-diagram approach indicate that these models are

sometimes easier to understand compared to the multi-diagram

approach where information is spread over several diagrams, while

comprehensibility is decreased if answering a question requires

information on only one aspect that may be expressed in one

UML diagram [P27,P30].

Regarding formal approaches and automation, while using for-

mal languages in combination with UML is proposed to improve

consistency, it is also discussed that formal models are more diffi-

cult to read for humans and it is better to generate them from the

informal ones and constraints should be first written in a human-

readable form [P34]. On the other hand, formality allows simula-

tion and analysis which may improve comprehensibility by hu-

mans [P22,P24,P34]. Using concepts close to the domain as in a

DSML is also supposed to improve the comprehensibility of models

especially by non-technical experts [P13,P39,P33] and some exper-

iments suggest that stereotyped models are understood better

[P16,P35].

Comprehensibility by tools is achieved by having a formal or

precise semantics by adding such semantics in models, stereotypes

and DSMLs, and of course during transformations.

Some research discuss that problems with comprehensibility by

users may indicate poor design [P7,P8] while good design improves

also comprehensibility. We have not covered design quality in this

review but this observation is interesting to have in mind.

C5-Confinement. Regarding modelling process, Berenbach [P3],

Mitchell [P25] and Ambler [P1] have proposed conventions that im-

pact confinement such as using the right modelling artefacts, being

free of implementation and design decisions for an analysis model,

having focus on correct separation of concerns (also in [P5]), identi-

fying scope as early as possible, having focus on domain concepts

and startingmodelling process from them, clear separationbetween

models and what they should cover, and modelling from different

views. Many of these conventions may be integrated in a model-

based development process, for example Gavras et al. emphasize

defining an activity for selecting modelling languages and tools

appropriate for the domain and the needs of modelling [P9].

Regarding formal approaches and automation, sometimes

developing a DSML is the right solution for an organization

[P13,P33,P39] since it includes only elements and diagrams neces-

sary for the domain.

C6-Changeability. Maintainability of models and updating them

is a major challenge as it is with code, especially when models gets

large and complex as it is in many industry applications. However,

maintenance and evolution of models has not received much

attention by now.

Regarding modelling process, maintenance of models is dis-

cussed in Agile Modelling (AM) which has recommendations such

as a single source of information, creating simple content and

depicting them simply.

Regarding formal approaches and automation, Jonkers et al. dis-

cuss that modelling in a DSML brings the modelling discipline

much closer to domain experts and at the same time enables sim-

pler maintenance and evolution of such models, which contributes

to the agility of the model-driven development [P13]. On the other

hand, Safa writes that updating the metamodel of a DSL and the

associated tools with a limited user base is costly and as a result

the language may lag behind the changes in the domain [P33].

We also think that generating models from other models is a prac-

tice that allows keeping models in synch with one another when

changes in one happen.

Many practices regarding maintenance of code also apply to

models. For example models that are well-organized and well-doc-

umented are easier to maintain and update. A model which is eas-

ier to communicate may reduce the ‘‘mythical man month”, the

time that is normally taken to learn a new system, which will im-

prove the cost effectiveness of maintaining systems [8].

Summary. Fig. 11 summarizes the literature on the impact of the

practices on the 6C goals where dashed lines indicate that both po-

sitive and negative impact is observed. As depicted in Fig. 11, the

proposed practices often impact several quality goals:

� Improving the modelling process may impact all quality goals if

proper activities are included.

� Coding conventions or styles have earlier been promoted to

improve the quality of code. In order to improve the uniformity

of models and prevent defects, some authors advocate the use of

modelling conventions. Styles, rules and conventions are kind of

best practices proposed to improve all aspects of model quality

and should be included in a model-based development process.

Changeability

Consistency

Comprehensibility

by humans

Confinement

Completeness

Correctness

Formal approaches and automation

DSMLsor 

UML extensions

Generating models 

from models

Formal models

Modelling process

Single-diagram approach

Modelling conventions

Model driven 

development process

slaogytilauQsecitcarP

Fig. 11. The impact of practices on model quality goals. Continuous lines indicate

positive impact while dashed lines indicate that the impact may be positive or

negative.

P. Mohagheghi et al. / Information and Software Technology 51 (2009) 1646–1669 1665



� Using less number of views is proposed to reduce the complex-

ity of modelling and improve completeness. It may impact com-

prehensibility by humans positive or negative.

� Using a formal modelling language improves correctness and

consistency of models and may also improve comprehensibility

by humans if models may be simulated. Formal models are on

the other hand more difficult to read for humans.

� DSMLs or UML profiles allow developing models with the vocab-

ulary of the domain that is more comprehensible for humans.

Other advantages are developing models that are formal, more

concise, correct and suitable for code generation. However,

updating the language and editors is difficult and models should

be updated with changes in the metamodel.

� Model-based generation by transformations improves consis-

tencybetweenartefacts anda transformation tool cancheckmod-

els for their correctness and completeness during transformation.

6.2. Assessing quality

In this section we present some observations regarding tool sup-

port and quality assurance techniques from the covered literature.

The main methods for detecting errors or assessing quality are:

� Inspections: several quality goals such as consistency, complete-

ness and confinement can be assessed by means of manual

human inspections; as proposed in [P3,P22,P26], also by using

checklists [P38]. Both modelling experts and non-technical

experts should be involved in inspections; especially for evalu-

ating comprehensibility and confinement aspects. The OORT

techniques (Object-Oriented Reading Techniques) is an example

of systematic inspection techniques to inspect (‘‘compare”) UML

diagrams with each other for completeness and consistency

(vertical and horizontal) [2].

� Tools for error detection: some have developed tools that check

models for inconsistency, incompleteness and incorrectness

problems such as naming conflicts, missing associations and

incorrectly defined interfaces. Examples are the DesignAdvisor

tool [P3] and SDMetrics [P20]. Tools for model checking based

on formal approaches (adhering to rules and constraints for

example related to consistency and requirement goals) are cov-

ered as well such as the SPINs model checking and simulation

environment [P5,P24], Hydra framework [P14], MCC+ [P2] and

OCL Evaluator tool [P12].

� Collecting metrics from models: Berenbach proposes collecting

metrics from models to evaluate their completeness [P4] and

Lange et al. have developed the MetricViewEvolution tool for

collecting metrics and visualization them [P21]. Saeki and Kaiya

propose defining metrics at the metamodel level [P32].

For evaluating the usefulness of practices,we found examples of:

� Experiments: controlled experiments are often performed in aca-

demia, for example related to using UML profiles [P16] or the

single-diagram approach [P27].

� Pilot studies: some industry cases described in studies are actu-

ally pilot studies performed in order to evaluate usefulness of

an approach in a specific context, for example in [P26] and

related to DSMLs [P33,P39].

� Feedback from practitioners : some studies have systematically

collected feedback in industrial cases and analyzed them, such

as in [P34].

7. Discussion

This article covered mainly two issues: identifying model

quality goals (6C goals) important in model-based software

development and an overview of practices proposed in literature

to improve model quality, both based on the results of a systematic

literature review. The question facing us is whether the 6C classifi-

cation is more useful than other classifications defined in

[P15,P22,P26,P38]; such as dividing quality goals into syntax,

semantics and pragmatic quality. When trying to define what ex-

actly syntactic, semantic or other quality goals mean in the above

studies, the authors often tend to use the same terminology cov-

ered by the 6C goals; i.e., correctness, completeness, consistency

etc. There are other quality goals for models – such as being simple

– that are defined as being comprehensible and easy to change,

which are thus covered by our classification.

In addition to using a simple terminology, the 6C classification

is based on the results of a systematic review of literature on model

quality. In our opinion using the review results provides relevance.

For example one may talk of consistency as a semantic quality type

while the term ‘‘consistency between models” is better understood

by practitioners and also used in several studies.

Another question is whether we can join any two goals or re-

move any without significant impact on the discussion, which we

mean is not possible. Other quality goals may be added if necessary

and future research on the subject is necessary.

Quality of models is especially important in MDE:

� Since models are transformed into other models, they should be

correct. Otherwise, the principle of ‘‘garbage in, garbage out”

applies [P40].

� Model completeness is a prerequisite for transformation, consis-

tency checking and implementation. Coverage is one of the

requirements of completeness; for example all the use cases

are covered in the implementation.

� Consistency between diagrams becomes important if informa-

tion from separate diagrams should be combined for the pur-

pose of understanding or generation. Consistency between

models of the same system is important for keeping them in

sync for future evolution.

� Comprehensibility either by tools or humans is the main reason

for doing any modelling.

� MDE often involves developing several models of the system

with different purposes. Thus models should include informa-

tion depending on the purpose.

� Finally, models should be easy to change in order to support

evolution and maintenance. Persuading industry to use models

depends on whether modellers can change models easily and

continuously.

In short, it is hard or impossible to create something complete

and correct from something incomplete, erroneous or inconsistent.

Persuading industry to use MDE requires taking away some burden

of development by providing tools and methodologies that support

developing and maintaining high-quality models. For example a

recent article on model-based testing states that the ultimate suc-

cess of the approach relies on the quality of models that support

them [14], such as having enough details (being complete).

As the results of this review show, several practices are proposed

for improving the quality of models and some studies also include

empirical evidence. Studies on the impact of modelling processes

on the quality of models report positive feedback from industry

without providing details. While one may find a lot of literature

on the benefits of software processes in general, the relevant tasks

and activities for a MDE approach should be evaluated in industry

cases. Studies discussing the benefits of formalmodels and generat-

ing models or diagrams from other models or diagrams contained

only small examples, while modelling conventions, domain-spe-

cific approaches and the single-diagram modelling approach are

supported by industrial cases and student experiments. However,

1666 P. Mohagheghi et al. / Information and Software Technology 51 (2009) 1646–1669



the evidence from the domain-specific cases supports the benefits

of formal methods to some degree since DSMLs are usually formal.

Some practices may be enforced by CASE tools, for example OCL

constraints prevent making wrong choices and tools can prevent

syntactic errors and may keep models consistent with one another

if consistency rules are defined and support for checking is pro-

vided. Experiments on applying modelling conventions have con-

firmed that tool-support is important for reducing the effort

spent on modelling when using conventions [P18]. Using the pro-

posed practices especially supported by tools is the preventive ap-

proach or quality by construction. The second approach to quality

is an assessing approach as discussed in Section 6.2 based on static

analysis of models: model checking for formal models, collecting

metrics from models or getting feedback via inspections and inter-

views. Finally, there is also a predictive approach, for example the

quality of models may be evaluated from the quality of predictions

made from them if they are used for simulation and prediction.

However, the studies covered in this review did not include any

examples on using this approach.

8. Conclusions and future work

This article reviewed literature on the quality of models to an-

swer three research questions. The results are summarized below.

RQ1. What quality goals are defined in literature for models in

model-based software development?We identified six model quality

goals relevant for model-based software development; i.e., correct-

ness, completeness, consistency, comprehensibility by humans and

tools, confinement (as having precise modelling goals and being re-

stricted to them) and changeability (as being easily extensible and

modifiable). While some of these quality goals such as consistency

are studied in depth and solutions are proposed and implemented

in tools, others – such as changeability – are less discussed in the

covered literature.

RQ2. What practices are proposed to achieve or improve the above

quality goals? We identified six practices and divided them in two

groups. The first group is related to modelling process and covers

having a model-based development process, using modelling con-

ventions and the single-diagram approach. The second group is re-

lated to formal approaches and automation and covers formal

models, UML profiles and domain-specific modelling languages,

and generating models or diagrams from other models or dia-

grams. We discussed the impact of the proposed practices on the

6C goals with examples and empirical evidence reported in the

covered literature.

RQ3. What types of models and modelling approaches are covered

in literature? Most research covered UML models, however, in ap-

proaches where models play a central role in software develop-

ment or on the right hand side of the spectrum shown in Fig. 1.

However, even when models are merely sketches, their quality

has gained attention since high-quality models ease communica-

tion between development teams. We also found literature cover-

ing UML profiles and Domain-Specific Languages in the spirit of

model-driven engineering.

Empirical evidence in the covered literature is also included in

the article. Modelling conventions and the single-diagram model-

ling approach have been subject of student experiments that con-

firm some benefits but question others. For example the impact of

conventions depends on the task and tool-support. The benefits of

model-based development process and domain-specific modelling

approaches (including UML profiles) are observed in industrial

cases while formal models and generating models/diagrams from

models/diagrams are mostly discussed by examples and no empir-

ical evidence was detected in the covered literature. Additional evi-

dence may, however, be detected by performing a review with

focus on empirical studies.

The main purpose of this article has been to provide definitions

and classifications that can be part of a quality model with focus on

model quality. We have developed a tool for visual specification of

quality models as presented in [12] where we intend to insert the

results of this review. The next challenge of improving model qual-

ity is to select quality goals for a given context and to identify prac-

tices that may be applied in that context. Quality goals vary in the

lifecycle of a project and for different types of models. For example

the degree of required formality and detail vary. Models may also

be the intermediate or the final products of software development.

In short, a model should ‘‘fit for the purpose”. Thus a goal-driven

process for selecting quality goals and practices is proposed which

is subject of our future work.

Other research gaps are identified as well. While traditional

quality assurance techniques such as inspections andmeasurement

are applicable to models, they should be adapted to modelling pur-

poses, tasks and artefacts involved. Managing changeability and

complexity of large and complex models, keeping them consistent

and verifying quality on the model level are challenges in model-

driven engineering that are not yet properly covered.

Performing literature reviews is time consuming and integrat-

ing the results is not easy. The main benefits are, however, to pro-

vide new insight and identify research gaps. One challenge of this

review was selecting a terminology for classifying model quality

goals that is based on the existing work and is considered useful,

without being difficult to understand for practitioners. Since our

classification is based on the terminology used in the reviewed lit-

erature, we mean that it provides relevance and understandability.

We must further improve the classification by increasing the

breath of search for studies especially with focus on quality prom-

ises of the model-driven engineering approach. We are involved in

the MODELPLEX project12 which has the vision to evolve modelling

technologies and tools for complex system development. In MODEL-

PLEX, an empirical research plan is defined in order to evaluate the

impact of modelling technologies and tools on several attributes

such as the productivity of software developers and the quality of

models or generated artefacts. The results of empirical work will

be used to evaluate the quality impact of model-drive engineering

and the usefulness of our classification.

Acknowledgements

This work has been funded by the Quality in Model-Driven

Engineering project (cf. http://quality-mde.org/) at SINTEF and

the European Commission within the 6th Framework Programme

project MODELPLEX Contract Number 034081 (cf. http://

www.modelplex.org). We thank Dr. Marcela Fabiana Genero Bocco

and Dr. Michel Chaudron for their valuable comments and

suggestions.

Appendix I. List of primary studies included in the review

[P1] S.W. Ambler, The Elements of UML 2.0 Style, Cambridge

University Press, 2005.

[P2] M.C. Bastarrica, S. Rivas, P.O. Rossel, Designing and imple-

menting a product family of model consistency checkers, in: Pro-

ceedings of the Workshop on Quality in Modelling (QiM’07) held

at MODELS 2007, 2007, pp. 36–49.

[P3] B. Berenbach, The evaluation of large, complex UML analy-

sis and design models, in: Proceedings of the 26th International

Conference on Software Engineering (ICSE’04), 2004, pp. 232–241.

12 http://www.modelplex-ist.org/.

P. Mohagheghi et al. / Information and Software Technology 51 (2009) 1646–1669 1667



[P4] B. Berenbach, Metrics for model-driven requirements

development, in: Proceedings of the 28th International Conference

on Software Engineering (ICSE’06), 2006, pp. 445–451.

[P5] Y. Choi, C. Bunse, Behavioral consistency checking for com-

ponent-based software development using the KobrA approach, in:

Proceedings of the 3rd International Workshop, Consistency Prob-

lems in UML-based Software Development III – Understanding and

Usage of Dependency Relationships, held at UML 2004, 2004, pp.

83–98.

[P6] B. DuBois, C. Lange, S. Demeyer, M. Chaudron, A qualitative

investigation of UML modeling conventions, in: Proceedings of the

1st Workshop on Quality in Modeling (QiM’06) held at MoDELS

2006, 2006, pp. 79–84.

[P7] H. Eichelberger, Aesthetics of class diagrams, in: Proceed-

ings of the 1st IEEE International Workshop on Visualizing Soft-

ware for Understanding and Analysis (VISSOFT 2002), IEEE CS

Press, 2002, pp. 23–31.

[P8] H. Eichelberger, Nice class diagrams admit good design? in:

Proceedings of the ACM Symposium on Software Visualization,

2003, pp. 159-ff.

[P9] A. Gavras, M. Belaunde, L.F. Pires, J.P.A. Almeida, Towards

an MDA-based development methodology for distributed applica-

tions, in: Proceedings of the EWSA’04, 1st European Workshop on

Software Architecture, LNCS, vol. 3047, Springer Berlin/Heidelberg,

2004, pp. 230–240.

[P10] M. Giese, R. Heldal, From informal to formal specifications

in UML, in: Proceedings of the UML 2004, LNCS, vol. 3273, Springer

Berlin/Heidelberg, 2004, pp. 197–211.

[P11] R. Haesen, M. Snoeck, Implementing consistency manage-

ment techniques for conceptual modelling, in: Proceedings of the

3rd International Workshop, Consistency Problems in UML-based

Software Development III – Understanding and Usage of Depen-

dency Relationships, held at UML 2004, 2004, pp. 99–113.

[P12] B. Hnatkowska, A. Walkowiak, Consistency checking of

USDP models, in: Proceedings of the 3rd International Workshop

Consistency Problems in UML-based Software Development III –

Understanding and Usage of Dependency Relationships, 2004, pp.

59–70.

[P13] H. Jonkers, M. Stroucken, R. Vdovjak, Bootstrapping do-

main-specific model-driven software development within Philips,

in: Proceedings of the 6th OOPSLA Workshop on Domain Specific

Modeling (DSM’06), 2006, 10 p.

[P14] S. Konrad, H.J. Goldsby, B.H.C. Cheng, i2MAP: an incremen-

tal and iterative modelling and analysis process, in: Proceedings of

the MoDELS 2007, LNCS, vol. 4735, 2007, pp. 451–466.

[P15] J. Krogstie, A. Sølvberg, Information Systems Engineering:

Conceptual Modeling in a Quality perspective, Kompendiumforla-

get, Norway, 2000.

[P16] L. Kuzniarz, M. Staron, C. Wohlin, An empirical study on

using stereotypes to improve understanding of UML models, in:

Proceedings of the 12th IEEE International Workshop on Program

Comprehension, 2004, pp. 14–23.

[P17] C.F.J. Lange, Managing model quality in UML-based soft-

ware development, in: Proceedings of the 13th IEEE International

Workshop on Software Technology and Engineering Practice

(STEP’05), 2005, pp. 7–16.

[P18] C.F.J. Lange, B. DuBois, M.R.V. Chaudron, S. Demeyer, An

experimental investigation of UML modeling conventions, in: Pro-

ceedings of the MODELS’06, 2006, pp. 27–41.

[P19] C.F.J. Lange, Assessing and Improving the Quality of Mod-

eling – A Series of Empirical Studies about the UML, Ph.D. thesis,

Technische Universiteit Eindhoven, 2007.

[P20] C.F.J. Lange, M.R.V. Chaudron, Defects in industrial UML

models – a multiple case study, in: Proceedings of the Workshop

on Quality in Modelling (QiM’07) at MODELS 2007, 2007, pp. 50–

65.

[P21] C.F.J. Lange, M.A.M. Wijns, M.R.V. Chaudron, A visualiza-

tion framework for task-oriented modeling using UML, in: Pro-

ceedings of the 40th Annual Hawaii International Conference on

System Sciences (HICSS 2007), 2007, pp. 289a–289a.

[P22] O.I. Lindland, G. Sindre, A. Sølvberg, Understanding qual-

ity in conceptual modelling, IEEE Software 11 (2) (1994) 42–49.

[P23] Z. Liu, H. Jifeng, X. Li, Y. Chen, Consistency and refinement

of UML models, in: Proceedings of the 3rd International Workshop

Consistency Problems in UML-based Software Development III –

Understanding and Usage of Dependency Relationships, 2004, pp.

23–40.

[P24] W.E. McUmber, B.H.C. Cheng, A general framework for

formalizing UML with formal languages, in: Proceedings of the IEEE

International conference on Software Engineering (ICSE’01), 2001,

pp. 433–442.

[P25] R. Mitchell, High-quality modeling in UML, 2001, <http://

www.inferdata.com/resources/whitepapers/HQmodeling.4.pdf>.

[P26] H.J. Nelson, D.E. Monarchi, Ensuring the quality of concep-

tual representations, Software Quality Journal 15 (2) (2007) 213–

233.

[P27] M. Peleg, D. Dori, The model multiplicity problem: exper-

imenting with real-time specification methods, IEEE Transactions

on SE 26 (8) (2000) 742–759.

[P28] H.C. Purchase, L. Colpoys, M. McGill, D. Carrington, C. Brit-

ton, UML class diagram syntax: an empirical study of comprehen-

sion, in: Proceedings of the Australian Symposium on Information,

2001, pp. 113–120.

[P29] H.C. Purchase, J.A. Allder, D. Carrington, Graph layout aes-

thetics in UML diagrams: user preferences. Journal of Graph Algo-

rithms and Applications 6 (3) (2002) 255–279.

[P30] I. Reinhartz-Berger, D. Dori, OPM vs. UML – experimenting

with comprehension and construction of web application models,

Empirical Software Engineering 10 (1) (2005) 57–80.

[P31] K. Ryndina, J.M. Küster, M. Call, Consistency of business

process models and object life cycles, in: Proceedings of the 1st

Workshop on Quality in Modelling (QiM’06) at MoDELS 2006,

LNCS, vol. 4364, 2006, pp. 80–90.

[P32] M. Saeki, H. Kaiya, Model metrics and metrics of model

transformation, in: Proceedings of the 1st Workshop on Quality

in Modeling (QiM’06) held at MoDELS 2006, 2006, pp. 31–

46.

[P33] L. Safa, The practice of deploying DSM, report from a Jap-

anese appliance maker trenches, in: Proceedings of the 6th OOPSLA

Workshop on Domain Specific Modeling (DSM’06), 2006, 12 p.

[P34] M. Staron, L. Kuzniarz, L. Wallin, Case study on a process

of industrial MDA realization: determinants of effectiveness, Nor-

dic Journal of Computing 11 (3) (2004) 254–278.

[P35] M. Staron, L. Kuzniarz, C. Wohlin, Empirical assessment of

using stereotypes to improve comprehension of UML models: a set

of experiments, Journal of Systems and Software 79 (5) (2006)

727–742.

[P36] R. van Der Straeten, Formalizing behaviour preserving

dependencies in UML, in: Proceedings of the 3rd International

Workshop Consistency Problems in UML-based Software Develop-

ment III – Understanding and Usage of Dependency Relationships,

2004, pp. 71–82.

[P37] B. Trask, D. Paniscotti, A. Roman, V. Bhanot, Using model-

driven engineering to complement software product line engineer-

ing in developing software defined radio components and applica-

tions, in: ACM SIGPLAN International Conference on Object-

Oriented Programming, Systems, Languages and Applications

(OOPSLA’06), 2006, pp. 846–853.

[P38] B. Unhelkar, Verification and Validation for Quality of

UML 2.0 Models, Wiley, 2005.

[P39] H. Wegener, Balancing simplicity and expressiveness:

designing domain-specific models for the reinsurance industry,

1668 P. Mohagheghi et al. / Information and Software Technology 51 (2009) 1646–1669



in: Proceedings of the 4th OOPSLA Workshop on Domain-Specific

Modelling (DSM’04), 2004.

[P40] F. Weil, B. Mastenbrook, D. Nelson, P. Dietz, A. van der

Berg, Automated semantic analysis of design models, in: Proceed-

ings of the MoDELS 2007, LNCS, vol. 4735, 2007, pp. 166–180.

Appendix II. Publication channels and summary of the primary

studies

The numbers of primary studies identified in each publication

channel are in (). The titles of publication channels with more than

three primary studies appear in italic.

Books (3)

Ph.D. thesis (1)

Software and Systems Modeling (SoSyM) Journal (0)

Software Quality Journal (1)

Empirical Software Engineering Journal (1)

Journal of Systems and Software (1)

Information and Software Technology (0)

UML/MoDELS conferences (4)

QiM workshops at MoDELS (5)

Other workshops at UML/MoDELs conferences (5)

ECMDA-FA conferences (0)

ICSE, International Conference on Software Engineering (3)

OOPSLA, Conference on Object-oriented programming systems,

languages, and applications (1)

DSM workshops at OPPSLA (3)

Digital libraries (6)

Searched Internet for publications of authors as given in references

of other papers (Lange and Staron) (4)

Other Internet search (1)

Known from before (1) (this is [P22])

References

[1] C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Laitenberger, R. Laqua, D. Muthig,
B. Paech, J. Wust, J. Zettel, Component-based Product Line Engineering with
UML, Addison-Wesley Publishing Company, 2002.

[2] R. Conradi, P. Mohagheghi, T. Arif, L.C. Hedge, G.A. Bunde, A. Pedersen, Object-
oriented reading techniques for inspection of UML models – an industrial

experiment, in: Proceedings of the European Conference on Object-Oriented
Programming (ECOOP’03), LNCS, vol. 2749, 2003, pp. 483–501.

[3] K. Cox, K. Phalp, Replicating the CREWS use case authoring guidelines
experiment, Empirical Software Engineering 5 (2000) 245–267.

[4] D. Harel, B. Rumpe, Modeling Languages: Syntax, Semantics and All that Stuff.
Technical Paper Number MCS00-16, The Weizmann Institute of Science,
Rehovot, Israel, 2000.

[5] M. Jørgensen, M. Shepperd, A systematic review of software development cost
estimation studies, IEEE Transactions on SE 33 (1) (2007) 33–53.

[6] S. Kelly, J.P. Tolvanen, Domain-Specific Modelling, Enabling Full Code
Generation, IEEE Computer Society Publications, 2008.

[7] B. Kitchenham, Guidelines for performing systematic literature reviews in
software engineering, v2.3, EBSE Technical Report 2007-01, developed by
Software Engineering Group at Keele University and Department of Computer
Science at University of Durham, 2007, 65 p.

[8] A. MacDonald, D. Russell, B. Atchison, Model-driven development within a
legacy system: an industry experience report, in: Proceedings of the Australian
Software Engineering Conference, 2005, pp. 14–22.

[9] P. Mohagheghi, J.Ø. Aagedal, Evaluating quality in model-driven engineering,
in: International Workshop on Modeling in Software Engineering (MiSE’07)
ICSE Workshop, 2007, 6 p.

[10] P. Mohagheghi, V. Dehlen, Developing a quality framework for model-driven
engineering, in: Proceedings of the 2nd Workshop on Quality in Modeling at
MoDELS 2007, LNCS, vol. 5002, 2007, pp. 275–286.

[11] P. Mohagheghi, V. Dehlen, Where is the proof? – a review of experiences from
applying MDE in industry, in: Proceedings of the 4th European Conference on
Model Driven Architecture Foundations and Applications (ECMDA’08), LNCS,
vol. 5095, 2008, pp. 432–443.

[12] P. Mohagheghi, V. Dehlen, T. Neple, Towards a tool-supported quality model
for model-driven engineering, in: Proceedings of the 3rd Workshop on Quality
in Modelling (QiM’08) at MODELS 2008, 2008, 15 p.

[13] P. Mohagheghi, V. Dehlen, A metamodel for specifying quality models in
model-driven engineering, in; Proceedings of the Nordic Workshop on Model
Driven Engineering, 2008, pp. 51–65.

[14] A.D. Neto, R. Subramanyan, M. Vieira, G.H. Travassos, F. Shull, Improving
evidence about software technologies, a look at model-based testing, IEEE
Software 23 (3) (2008) 10–13.

[15] K.T. Phalp, J. Vincent, K. Cox, Improving the quality of use case descriptions:
empirical assessment of writing guidelines, Software Quality Journal 15 (4)
(2007) 383–399.

[16] J. Rech, A. Spriestersbach, D.4.1: quality defects in model-driven software
development, deliverable of Vide project 2007, <http://www.vide-ist.eu/
extern/VIDE_D4.1.pdf>.

[17] J. Rumbaugh, I. Jacobson, G. Booch, The Unified Modeling Language Reference
Manual, Addison-Wesley, 1999.

[18] M. Staron, Adopting model driven software development in industry – a case
study at two companies, in: Proceedings of the MoDELS 2006, LNCS, vol. 4199,
2006, pp. 57–72.

[19] A. Watson, A brief history of MDA, upgrade, European Journal for the
Informatics Professional IX (2) (2008). URL <http://www.upgrade-
cepis.org>.

[20] R.K. Yin, Case Study Research: Design and Methods, Saga Publications, 2003.

P. Mohagheghi et al. / Information and Software Technology 51 (2009) 1646–1669 1669


